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I am a computer systems researcher with a focus on system reliability. I develop formal verification and software
testing techniques to address pressing reliability issues in cloud systems.

The reliability of cloud systems is paramount. Modern clouds are architected as layers of critical systems including
cluster managers, storage systems, databases, big data and streaming execution engines, service meshes, machine
learning systems, etc. Defects in these systems can cause disastrous failures such as service outages, data loss, and
security issues. However, ensuring the reliability of cloud systems is notoriously hard. First, many of these systems do
not have a clearly defined correctness specification, making it hard to test these systems rigorously, let alone formally
verify them. Second, cloud systems run within complex and dynamic environments: They need to handle unusual user
input, and tolerate various factors including unexpected failures, network issues, concurrency, and asynchrony. As a
result, testing often falls short due to the low coverage, and formal verification is hard to apply to practical systems.

My research goal is to improve the reliability of modern clouds, and my vision is to formally verify the
entire cloud stack. To be practical, my research leverages an opportunity that modern cloud systems are increasingly
architected as a fleet of modularized components instead of being monolithic, so that verification can be made practical
by focusing on verifying each component at a time and then composing their proofs to obtain a correctness guarantee
of the entire system. In this way, we can gradually replace existing components with formally verified ones. For
example, my previous work Anvil is a framework that allows developers to implement cluster manager components
in Rust and verify that their implementations satisfy high-level properties including liveness and safety [10]. The
verified components can be directly deployed in a real-world Kubernetes cluster and used as drop-in replacements for
existing, unverified components; the verified components achieve feature parity and the same performance compared
to existing ones. Anvil’s verification guarantees the absence of a broad range of bugs, including most bugs detected by
my work on testing cluster managers [3, 8, 11]. In addition to cluster managers, my research covered other layers and
aspects of modern cloud stack, including consensus-based storage systems (e.g., ZooKeeper) [4,5], cloud service (e.g.,
Azure Storage, AWS S3) integrations [1], and cloud system configurations [6]. My research has involved techniques
including deductive verification [10], model checking [4, 5], fault injection [1, 8, 11], and software testing [3, 6].

My research methodology is to first develop a deep understanding of real-world, widely-used cloud systems
by systematic testing, and then build provably correct, practical cloud systems by formal verification. My insight
is that the key to verifying practical systems is not only about writing proofs, but also about coming up with formal
specifications. In practice, many important systems do not have a formal specification; they are not built by referring
to well-studied algorithms or protocols from textbooks or research papers—they are built with developers’ best-effort
heuristics and documented in ambiguous prose. I believe that testing is a practical approach to understanding what
key properties a system should guarantee but often fails to guarantee. For example, my previous research, Sieve [8]
and Acto [3], tested over 20 different components in Kubernetes and detected over 120 severe new bugs. The testing
results revealed a dominating failure pattern: Cluster managers fail to eventually achieve the desired state, which is a
liveness violation. This insight enables the Anvil project and leads me to formalize the correctness of cluster managers
as Eventually Stable Reconciliation (ESR), a liveness property. ESR has already turned into practical systems—I have
built three microservices running as part of Kubernetes and verified that they implement ESR using Anvil.

My research emphasizes making real-world impact in both academia and industry. Through automatic testing
and model checking, my research has discovered over 200 new bugs and led to over 120 bug fixes in critical cloud
systems, including Kubernetes, ZooKeeper, Hadoop, HBase, Alluxio, Orleans, and cluster manager microservices for
managing popular cloud systems, including Cassandra, Elasticsearch, Knative, MongoDB, RabbitMQ, Redis, TiDB,
and ZooKeeper. Many of the bugs have severe consequences, including application outages, data loss, and security
issues. Some of the bugs reflect design-level flaws: To fix these bugs, developers revamped the original design by
changing hundreds of lines of implementation. Developers highly appreciated our bug reports with comments like
“It is a great analysis and verification!” The ideas of Ctest, Sieve, and Acto have been adopted and followed by
developers from large companies including Anyscale, Google, and VMware. We have been invited to present Acto,
Sieve, and Anvil at major industrial conferences including KubeCon and SRECon, and publish articles at the USENIX
;login: magazine [2, 7, 9]. Our outreach has sparked interest from open-source communities (e.g., Elasticsearch) and
companies (e.g., Amazon) in adopting our research. Ctest, Sieve, and Acto are used to develop course projects for two
courses on software testing and operating systems at UIUC, respectively. Anvil received the Jay Lepreau Best Paper
Award at OSDI 2024. All my research projects are open-sourced to enable further research and development.
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1 Past and Current Research

Testing cluster management controllers. Modern cluster managers break down management logic into a fleet of
microservices, called controllers. For example, in Kubernetes, all the cluster management logic is encoded in different
controllers. Today, thousands of controllers are implemented by commercial vendors and open-source communities
to extend Kubernetes with new capabilities. Despite the importance and prevalence of controllers, ensuring their
reliability is challenging. Controllers run within complex, dynamic, and distributed environments. They must safely
drive the system to desired states while tolerating unexpected failures, network interruptions, and asynchrony issues.
Unreliable controllers lead to severe consequences such as application outages, data loss, and security issues.

I observed that controllers’ reliability challenges come from their state-reconciliation design: Each controller
continuously monitors a subset of the cluster state and reconciles the current cluster state to match a desired state.
A controller’s behavior depends on the cluster state it observes, but there is an enormous space of cluster states that
a controller can possibly observe, making it hard to design a state-reconciliation procedure that never goes wrong.
Based on my observation, I built Sieve, the first automatic reliability testing technique for cluster management
controllers [8]. The key idea of Sieve is to drive unmodified controllers to their buggy corners by systematically
perturbing the controller’s view of the cluster state. Sieve performs bounded exhaustive testing and does not depend
on hypotheses about vulnerable regions in the code where bugs may lie. To detect diverse controller bugs, Sieve
employs three perturbation patterns that expose controllers to (1) intermediate states, i.e., cluster states resulted from
the controller crashing in the middle of state reconciliation, (2) stale states (or past cluster states) due to asynchrony
and slowness issues, and (3) unobserved states caused by missing some cluster state transitions due to data race or
network issues. To automatically flag a triggered bug, Sieve uses differential oracles that compare the cluster state’s
evolution with and without perturbations to automatically detect safety and liveness issues. To help developers localize
each bug in the code, Sieve can deterministically reproduce previously triggered bugs by replaying the corresponding
state perturbations. Sieve has discovered 46 serious new bugs (35 confirmed and 22 fixed) in 10 popular Kubernetes
controllers for managing critical cloud systems including Cassandra, MongoDB, and ZooKeeper.

Sieve is highly automated but its testing quality depends on developer-provided testing workloads. My research
then introduced Acto, the first functional testing tool that automatically generates high-coverage testing work-
loads for controllers [3]. Acto generates hundreds of diverse and representative workloads to test whether a controller
can reconcile the cluster state to match different desired states, and whether a controller can reach the same desired
state starting from different initial cluster states. Acto has discovered 81 serious new bugs (62 confirmed and 43 fixed)
in 14 popular Kubernetes controllers.

Building formally verified, practical cluster management controllers. Testing controllers revealed a dominating
failure pattern: Controllers fail to eventually achieve the desired state, which is a liveness violation. With lessons
learned from testing, I built Anvil, the first framework for building formally verified, practical cluster manage-
ment controller implementations [10]. Anvil allows developers to confirm controller correctness at compile time
using formal verification: Developers write the controller implementation along with a proof that the implementation
always meets a specification (e.g., liveness or safety) of the controller’s desired behavior. The verified controllers are
practical and can be directly deployed in a real-world Kubernetes cluster and manage real-world applications.

To enable formal verification for controllers and reduce developers’ specification burden, Anvil formalized con-
troller correctness into Eventually Stable Reconciliation (ESR), a liveness property written in the Temporal Logic of
Actions (TLA). ESR states that a controller should eventually reconcile the cluster to a desired state, and then always
keep the cluster in the desired state. ESR is generally applicable to all controllers and it captures the essential func-
tionality that controllers should provide in a precise language. ESR precludes a broad range of bugs caused by factors
like inopportune failures, network disruptions, concurrency issues, and conflicts with other controllers.

To reduce developers’ proof burden, Anvil provides a set of features. A unique challenge of proving liveness
properties such as ESR is that liveness depends on subtle fairness assumptions, including assumptions about possible
failures (e.g., crashes due to hardware or power failures). Overly strong assumptions (e.g., the controller can crash at
most once) lead to weak correctness guarantees, and overly weak assumptions (e.g., the controller can keep crashing
forever) make liveness verification impossible—when running on a machine that keeps crashing immediately after
reboot, even a correct controller cannot make progress to the desired state. Anvil employs an assumption that covers a
broad range of failure scenarios—an arbitrary number of failures can happen, but eventually failures stop happening. In
addition, Anvil provides a temporal embedding and a set of temporal lemmas to facilitate and automate liveness proofs
for controllers, a general proof strategy to help developers structure their ESR proofs, and a general environment model
that encodes the (trusted) system components that interact with controllers and the failure model of the controllers.

2



With Anvil, I have built three practical Kubernetes controllers for managing ZooKeeper, RabbitMQ, and FluentBit
and verified that they implement the ESR property. Although Anvil is primarily designed for liveness verification, it
also supports safety verification; I prove a safety property specific to the RabbitMQ controller. The verified controllers
can readily be deployed in real-world Kubernetes platforms and provide feature parity w.r.t. existing mature, widely
used (but unverified) controllers; they implement critical features including scaling, upgrading, and reconfiguration.
The verification process also exposed deep bugs in both our early implementations and unverified reference controllers.
Evaluation shows that that the verified controllers achieve the same performance compared to the widely-used, unver-
ified references. Testing the verified controllers using Sieve and Acto finds no bugs in the verified code.

I have been continuously developing and improving Anvil to make it an open platform for developing cluster
management controllers and verifying various liveness and safety properties. I am using Anvil to implement and
verify a series of core controllers in Kubernetes (e.g., ReplicaSet, StatefulSet). These controllers directly manage
low-level cluster resources including nodes and containers, and are used to support the higher-level controllers that
manage applications, e.g., the aforementioned three controllers. In addition, I am using Anvil to explore exciting future
research directions (§2). I envision in the future Anvil being the default platform that practitioners use to build their
controllers, and researchers use to experiment with different verification techniques (e.g., automating liveness proof).

Efficient model checking for consensus-based storage systems. Consensus-based storage systems, such as ZooKeeper
and etcd, play a critical role in today’s cloud stack. For example, they are used to maintain and serve the cluster state
to cluster managers like Kubernetes. These systems are notoriously hard to get right because they implement complex
consensus algorithms, fault tolerance mechanisms, and performance optimizations. To efficiently verify these systems’
implementations, my research has introduced efficient model checking techniques [4, 5]. For example, Remix [4]
allows developers to verify consensus-based system implementations using specification-level model checking and
conformance testing. With Remix’s methodology, developers write multi-grained specifications, i.e., multiple spec-
ifications with different granularities for composable modules, and compose them into mixed-grained specifications
for specific scenarios. For example, to verify a code change, developers compose a mixed-grained specification using
fine-grained specifications of changed modules and coarse-grained specifications that abstract away details of un-
changed code. Remix performs conformance testing to ensure that each specification conforms to the corresponding
implementation, performs model checking using the mixed-grained specification, and confirms any bug found during
specification-level model checking by replaying it at the implementation level. The model checking techniques have
discovered 29 bugs in widely-used consensus-based storage systems that implement protocols such as Raft and Zab.

Testing cloud-backed applications. Modern applications increasingly depend on cloud services (e.g., AWS S3, Azure
Storage) for various functionalities. Despite the benefits, such “cloud native” practice imposes emerging reliability
challenges introduced by the fault models of opaque cloud backends and less predictable connections between the
application and cloud services. My research takes a first step to address the emerging reliability challenges by building
a “push-button” reliability testing tool named Rainmaker [1], as a basic SDK utility for any cloud-backed application.
Rainmaker helps developers easily and systematically test their applications’ correctness, in the face of various errors
under the cloud-based fault model. The core of Rainmaker is its automatic fault injection policies that define what
faults to inject and where (e.g., at which REST calls) to inject faults. Rainmaker’s fault injection policies are guided
by a bug taxonomy: It considers transient error(s) that can occur during one REST API call initiated by the application
(and the corresponding retries by the SDK); yet, it captures common bug patterns and shows that error (mis)handling
of even one REST call can have major impacts on application correctness. Rainmaker has detected 73 bugs (55
confirmed and 51 fixed) in 11 popular cloud-backed applications.

Testing configuration changes in cloud systems. Besides code bugs, configuration errors are among the dominant
causes of cloud and datacenter failures and they are notoriously fatal and hard to deal with. The problem is exacerbated
by the high speed of configuration changes—large-scale cloud services deploy hundreds to thousands of configuration
changes to production systems daily, often more frequent than code changes. My research introduced Ctest [6], a
new type of tests for detecting failure-inducing configuration changes. Ctests connect software tests with production
system configurations and test configuration changes in the context of code that is affected by the changes. In this
way, Ctests effectively detect both configuration errors and code bugs triggered by configuration changes. My re-
search also introduced a methodology for generating Ctests by transforming the existing and abundant tests in mature
software projects in an automated fashion that reuses well-engineered test logic and oracles. I evaluated Ctests us-
ing 64 real-world configuration-induced failures, 1,055 diverse misconfigurations generated by error injection rules,
and 92 deployed configuration files from publicly-available Docker images. Ctests detected 96.9% of the real-world
failure-inducing configurations, 72% of the generated misconfigurations, and 10 misconfigurations in 7 deployed files.
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2 Future Research
My overarching goal is to build reliable cloud systems. I will continue my efforts toward this goal and expand my
research to reliability challenges in new domains. Here is an outline of my future research directions.

Compositional verification for cloud systems. Cloud systems are increasingly architected as a fleet of modularized
components. Verifying the system requires compositional verification of the interacting components. For example,
cluster managers are composed of layers of controllers. My previous work [10] allows developers to formally verify
cluster management controllers separately, but that does not conclude the correctness of the entire cluster manager. I
plan to build compositional verification techniques to reason about controllers and their interactions collectively. This
is challenging for mainly two reasons: (1) Controller correctness is formalized as liveness, and composing liveness
is hard due to circular reasoning, and (2) controller interactions are asynchronous—instead of directly calling other
controllers, a controller interacts with other controllers by monitoring changes to the cluster state made by other
controllers and issue new changes to the cluster state monitored by other controllers. To address these challenges, I will
(1) design composable liveness specifications and proof techniques to reason about controller liveness dependencies,
and (2) formalize a notion of ownership—a subset of the cluster state that is exclusively managed by some controller,
and uses this ownership to prove that controllers do not interfere with each other.

Pushing systems verification into practice by lifting proof burden. My previous work Anvil [10] enables formal
verification for practical cluster management controller implementations, but it has a scalability issue that developers
need to spend extensive manual proof efforts—a common problem in deductive verification. I plan to work on lifting
developers’ proof burden by automating proofs, especially liveness proof for complex system implementations; most
of the previous work focused on automating safety proof, but not liveness. As a concrete first step, I will work
on automating liveness verification for controllers in Anvil. From my experience, liveness verification for system
implementations is especially challenging: Proving liveness requires temporal logic reasoning which is not natively
supported by existing SMT-based automated theorem provers (e.g., Z3). To achieve better automation, I plan to offload
temporal logic reasoning to dedicated temporal verifiers. A key challenge is to connect existing proofs in Verus to
temporal verifiers while ensuring soundness. I also plan to explore other options, such as using ranking functions to
reduce the liveness property into safety properties that are easier to verify, fitting the proof into a decidable fragment
of first-order logic (e.g., EPR), and using LLM-based approaches for proof generation, synthesis, and repair.

Enabling verification for real-world, complex systems by developing specifications. I am excited to work on devel-
oping formal specifications for critical cloud systems. Many real-world, complex systems do not have formal specifi-
cations of their correctness. Lacking specifications disables formal verification and also makes testing challenging—it
is hard to write comprehensive testing oracles without a specification. For example, I plan to develop specifications
for commonly used cluster schedulers (e.g., Kubernetes schedulers). These schedulers should place application tasks
on cluster nodes while satisfying a series of constraints, including affinity and load balance—a challenging constraint
satisfaction problem. Designing specifications for systems like cluster schedulers brings many interesting research
problems, such as deciding the specification style, disambiguating system design choices that are poorly documented,
and validating the specifications. The specifications can be used in many ways, such as top-level theorems for verifi-
cation, oracles for testing, and environment models and mocks for verifying and testing upper-layer applications.

System reliability under emerging computing paradigms. The way people develop and deploy software systems
is shifting rapidly with emerging computing paradigms. Under the “cloud native” computing paradigm, applications
are often split into fine-grained components (e.g., microservices, serverless functions), depend on cloud services (e.g.,
AWS S3, Azure Storage) for various functionalities, and are deployed and managed using cluster managers (e.g.,
Kubernetes). With recent trends of Hybrid Cloud and Sky Computing, an application might depend on services
spanning across different clouds. Applications in new domains are also experiencing a paradigm shift. For example,
modern AI systems are increasingly built as compound systems with multiple interacting components [12]. The new
computing paradigms bring many benefits including availability, scalability, and flexibility, but also make reliability
more challenging than before—compared to the traditional setting, the applications’ failure models are complicated by
the many independent and interacting system components and the opaque cloud backends. A long-term goal of my
research is to study and address the new reliability issues brought by the emerging computing paradigms. For
example, I plan to work on cross-system interaction failures between cluster managers and applications: A scaling-
down operation of a distributed stateful application can cause permanent data loss if the cluster manager does not
understand how to safely migrate data before shutting down application nodes. In addition, I am excited to work on
improving the reliability of applications from new domains, including AI systems and immersive computing systems.
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