Check for
Updates

SandTable: Scalable Distributed System Model
Checking with Specification-Level State Exploration

Ruize Tang
SKL for Novel Soft. Tech.,
Nanjing University
Nanjing, China
tangruize@smail.nju.edu.cn

Xudong Sun
University of Illinois
Urbana-Champaign, IL, USA
xudongs3@illinois.edu

Yu Huang®
SKL for Novel Soft. Tech.,
Nanjing University
Nanjing, China
yuhuang@nju.edu.cn

Yuyang Wei Lingzhi Ouyang Xiaoxing Ma
SKL for Novel Soft. Tech., SKL for Novel Soft. Tech., SKL for Novel Soft. Tech.,
Nanjing University Nanjing University Nanjing University

Nanjing, China
yuyang_wei@smail.nju.edu.cn

Abstract

Implementation-level distributed system model checkers
(DMCKs) have proven valuable in verifying the correctness
of real distributed systems. However, they primarily focus
on state space reduction, and often have a bottleneck on an-
other crucial dimension: exploration speed. To scale DMCK,
we introduce SandTable, a technique for lifting state-space
exploration from the implementation level to the specifica-
tion level, and confirming bugs at the implementation level.
We made SandTable practical through a methodology con-
sisting of four essential parts: (1) writing specifications that
adhere to the implementation, (2) checking conformance to
enhance specification quality and reduce false positives and
false negatives, (3) exploring the state space with heuristics
for effectiveness and efficiency, and (4) confirming bugs and
verifying their fixes in the implementation.

We implemented SandTable with the design of transpar-
ently verifying unmodified distributed systems on POSIX sys-
tems. SandTable was integrated into eight well-established
open-source distributed systems that implement consen-
sus protocols such as Raft and Zab. SandTable identified
23 bugs in total, with 18 new bugs, 17 confirmed, and 13
fixed. SandTable demonstrates exceptional scalability, with

*Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys "24, April 22-25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0437-6/24/04...$15.00
https://doi.org/10.1145/3627703.3650077

Nanjing, China
lingzhi.ouyang@smail.nju.edu.cn

736

Nanjing, China
xxm@nju.edu.cn

one machine-day of specification-level exploration check-
ing up to 10° distinct states. Furthermore, specification-level
exploration offers a significant speedup, 114X—2989x faster
than implementation-level exploration.

CCS Concepts: «Software and its engineering — Model
checking; « Computer systems organization — Relia-
bility.

Keywords: Distributed systems, model checking, reliability

ACM Reference Format:

Ruize Tang, Xudong Sun, Yu Huang, Yuyang Wei, Lingzhi Ouyang,
and Xiaoxing Ma. 2024. SandTable: Scalable Distributed System
Model Checking with Specification-Level State Exploration. In Nine-
teenth European Conference on Computer Systems (EuroSys 24), April
22-25, 2024, Athens, Greece. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3627703.3650077

1 Introduction

Implementing correct and reliable distributed systems is no-
toriously hard. The developers must reason about system
behavior in the face of asynchrony, concurrency and faults.
Although protocols such as Paxos [70], Zab [65, 66] and
Raft [82] have been proved correct [66, 70, 71, 80, 81], imple-
menting such protocols remains a daunting task [42]. Con-
verting the protocols to production-ready systems requires
engineering efforts to implement performance optimizations
and handle practical constraints (e.g., limited memory or
storage resources). Testing is the most widely-adopted prac-
tice to find bugs, but it has no guarantee of the coverage of
distributed system state space.

Previous work has made great progress in verifying dis-
tributed system implementation by applying model check-
ing techniques [57, 58, 67, 74, 76, 77, 87, 91, 92]; for brevity,
we use the term DMCK [74] to categorize such systems.
Implementation-level model checking pushes the target sys-
tem into corner-case situations and unearths deep bugs by
directly exercising the implementation and systematically

https://doi.org/10.1145/3627703.3650077
https://doi.org/10.1145/3627703.3650077
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3650077&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22-25, 2024, Athens, Greece

exploring its state space. Distributed systems have large state
spaces, hereby making exhaustive state exploration prohibi-
tively expensive. To address the state-explosion problem, ex-
isting work has adopted various state-reduction techniques
(e.g., DPOR [50] and symmetry [45]) to avoid exploring re-
dundant states in terms of finding bugs, and optimizations
such as virtual clock [92] and state-event caching [76] to
improve the efficiency of state exploration.

However, existing implementation-level model checkers
for distributed systems still suffer from scalability issues
when exploring the state space of complex system imple-
mentations. Discovering a bug often requires exploring a
large number of states at the implementation level. Such
explorations are inefficient due to three primary reasons:

o Stateless exploration: repeated initializations of the cluster
and explorations of the same states.

e Slow implementation events: slow events such as network
and disk operations.

o Model checker overhead: instrumentation overhead to en-
force event interleaving and track system state.

Contributions. We propose SandTable, a technique that im-
proves the scalability of implementation-level model check-
ing for distributed systems. SandTable is based on an obser-
vation that the scalability of model checking for distributed
systems is plagued by not only the large state space, but also
the inefficient state exploration at the implementation level.
SandTable accelerates state exploration by lifting it from
the implementation level to the specification level, where the
state space is explored efficiently on a formal specification
of the system. Specification-level state exploration enjoys
stateful exploration, and avoids slow implementation events
and instrumentation overhead. For example, a bug [20] we
found requires the exploration of over 1,500,000 distinct
states. When explored at the specification level using a single
worker, it takes only 3.8 minutes. But finding the same bug
through exploration of the corresponding implementation-
level traces generated from the state space takes 257 hours.
When SandTable detects a bug in the specification, it con-
firms the existence of the bug in the implementation by de-
terministically replaying the bug-triggering event sequence
at the implementation level. SandTable achieves determinis-
tic replay by enforcing the runtime interleaving of system
events, such as message delivery, timeouts, node crashes, and
client requests. SandTable does not require any modification
to the system to control the interleaving: it transparently in-
terposes between the target system and the operating system
using the shared library preloading technique [26].
SandTable requires a formal specification of the target
system to perform model checking. Unfortunately, exist-
ing specifications may not always precisely describe the
behaviors of the implementations, thus introducing both
false negatives and false positives during model checking.
For example, discrepancies between the specification and

737

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

the implementation [89] and bugs [14] in the specification
were discovered in the Raft specification developed by the
protocol designer [81].

SandTable employs a conformance checking mechanism
to help develop specifications for their systems in an iterative
manner. During the conformance checking phase, SandTable
randomly explores the user-provided specification and uses
events from specification traces to execute the implemen-
tation. Once any discrepancies between the specification
state and the implementation state are detected during the
execution, SandTable reports the inconsistent variables and
the event sequence that leads to the discrepancy. The user
then fixes the specification to make it conform to the imple-
mentation and reruns the conformance checking until no
discrepancy is reported for a pre-specified period of time.

Key results. We implemented SandTable and applied it to
eight popular distributed systems that implement consensus
protocols such as Raft and Zab. SandTable found 23 bugs
in total, 18 of which were new. After reporting the 18 new
bugs, 17 have been confirmed and 13 have been fixed. These
bugs are deep semantic bugs: they require complex event
sequences to trigger (up to 25 events) and lead to severe
consequences, including data loss and data inconsistency.
SandTable scales well and efficiently unearths the deep
bugs. All the bugs were triggered under one machine hour.
Compared to implementation-level state exploration, SandTable
explores the state space 114x—2989x faster. The manual
efforts spent on improving the specification using confor-
mance checking are manageable. When applying it to the
specifications we developed, it took only half a person day to
a few person days to manually rectify all specification mod-
eling errors. When adapting existing specifications, such as
those of ZooKeeper [36, 83], it took two person weeks to
modify the specification to conform to the implementation.

Summary. The paper makes three main contributions.

e We present a novel and efficient model checking technique
for exploring specification-level state space to find bugs
in complex distributed system implementations.

e We design and implement SandTable, a model checker that
uses our proposed technique for unmodified distributed
system implementations.

e We integrate SandTable with eight distributed systems,
and present detailed evaluations showcasing the effective-
ness and efficiency of SandTable.

SandTable is open sourced at https://github.com/tangruize/
SandTable, with instructions to reproduce discovered bugs.

2 Background and Motivation

In this section, we first briefly introduce DMCKs. Then we
discuss the speed of state-of-the-art DMCKs and its impact
on DMCK scalability. These discussions further motivate the
speeding up of DMCKs via specification-level exploration.

https://github.com/tangruize/SandTable
https://github.com/tangruize/SandTable

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

2.1 DMCK Overview

We define DMCK [58, 67, 74, 76, 77, 87, 92] as the software
model checker which verifies distributed system correctness
at the implementation level. It has an interposition layer
for each process to deterministically control system execu-
tion, and enable system state observation. A DMCK engine
schedules system events and checks system properties.

In order to systematically explore the state space, DMCK
must implement an approach for state checkpointing and
restoration. There exist two approaches: stateful and state-
less [53]. The stateful approach stores the previously visited
states to avoid redundant exploration. However, it is difficult
or prohibitively expensive to compute a canonical represen-
tation of program states, making it hard to apply the stateful
approach to real-world systems [50].

The stateless approach does not need to store previously
visited states. It remembers the trace which leads to a state as
a checkpoint, and replays the trace to restore the state. This
approach requires little modifications to the target system,
making it practical to apply to complex systems. Many recent
DMCKs adopt the stateless approach [67, 74, 76, 92]. How-
ever, the stateless approach cannot distinguish redundant
states, leading to a more severe explosion of state/path space.
This problem is alleviated by dynamic partial order reduc-
tion (DPOR) [50], a sound state space reduction technique
that eliminates equivalent executions. However, DPOR may
still be insufficient for large-scale systems in certain scenar-
ios, and more reduction techniques like dynamic interface
reduction [58], symmetry rules [76], and semantic-aware
rules [74] have been proposed.

2.2 The Need for Specification-Level Exploration

We see much of the related work focuses on state space
reduction to scale up DMCK [58, 74, 76, 92]. However, the
slow exploration of implementation is also a major obstacle
to the efficient detection of bugs. Although previous work
has proposed techniques to improve the exploration speed
for each trace [76, 92], state-space exploration still remains
the performance bottleneck of DMCK.

For example, previous work has identified that stateless ex-
ploration and model checker overhead slow down implemen-
tation level model checking. In a 54-event execution example
provided by FlyMC [13], the stateless initialization takes 18
seconds, including tasks like cleaning the disk, restarting all
nodes and preparing initial disk data. FlyMC reduced this to
2 seconds via snapshotting and restoring the initial state of
the memory and disk. The event execution takes 18 seconds,
primarily due to the model checker overhead, which requires
a non-negligible wait time (e.g., 300ms) before enforcing the
next event. FlyMC optimized this to 4 seconds through local
ordering enforcement and state caching. Further optimiza-
tion of the event execution time (4 seconds) is challenging

738

EuroSys *24, April 22-25, 2024, Athens, Greece

because the time is mainly consumed by implementation
execution.

We summarize the orders of magnitude in state space
reached by state-of-the-art DMCKs in a single machine day,
as reported in their evaluations. MoDist can explore 10*—10°
executions, with an average duration of roughly 2 seconds
per execution. SAMC explores 10* executions, where each
execution runs for 40 seconds and involves 20-120 events.
FlyMC explores 10° executions and, owing to the execution
speedup for a single trace, reduces the duration for a 54-event
execution from 36 to 6 seconds [13].

Our insights. To further improve the scalability of DMCKs,
we need to optimize from a different perspective that can
avoid the problems introduced by slow implementation-level
execution combined with stateless exploration.

We observed that exploring the state space of the speci-
fication for one machine day can cover 10° distinct states.
If we treat the exploration time for every single state as
equal across all states, the duration for exploring 50 events
of the ZAB specification would be a mere 40.6 milliseconds.
Specification-level exploration is stateful, inherently avoid-
ing redundant states. Moreover, it eliminates issues intro-
duced by DMCK overhead and code execution. These find-
ings motivate us to lift state space exploration to the specifi-
cation level to further scale DMCKs.

3 SandTable

We propose the SandTable framework to speed up distributed
system model checking by lifting state-space exploration
from the implementation level to the specification level.
SandTable checks the system behavior against correctness
properties by exhaustively and efficiently exploring its state
space at the specification level. SandTable focuses on finding
deep bugs triggered by complex interleavings of node-level
events including message handling and failures. To avoid
false alarms, for each bug detected at the specification level,
SandTable reproduces the bug at the implementation level
by deterministically injecting the specification-level events
that triggered the bug.

To check a distributed system using SandTable, developers
should provide a formal specification of the system (§3.1).
The specification is written as a state machine for model
checking purposes. The specification does not describe the
ideal implementation that satisfies all the correctness prop-
erties; instead, it describes the actual (potentially buggy)
implementation but in a more concise way.

With the specification, SandTable faces three major chal-
lenges: (1) Since specification development is an error-prone
process and there could be unexpected discrepancies be-
tween the specification and the implementation, how to
guarantee the quality of the specification? (2) How to mit-
igate the state explosion problem during model checking?
(3) How to avoid false alarms that cannot be reproduced at

EuroSys ’24, April 22-25, 2024, Athens, Greece

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

Fix discrepancies in spec. Configurations and .
. ixes
constraints (§3.3)
Spec. (§3.1)
Conformance |/ High-quality | Model checking | Safety Bug replay Bug Fix validation
Impl. checking (§3.2) Spec. (§3.3) violations | (§3.4) report (83.4)

Figure 1. The workflow of SandTable. Red arrows require manual work.

the implementation level due to discrepancies between the
specification and the implementation?

To address the first challenge, SandTable employs iterative
conformance checking (§3.2) to improve the quality of the
specification. It randomly explores the specification-level
state space, replays the same trace at the implementation
level by enforcing the same event interleaving, and detects
discrepancies between the specification and the implementa-
tion. The developers need to fix the discrepancies and pass
the conformance checking phase until there are no discrep-
ancies found after a timeout (e.g., 30 minutes).

To address the second challenge, SandTable helps develop-
ers to decide the constraints (e.g., number of events) of the
model checking to bound the state space (§3.3). SandTable
randomly searches the state space for each user-provided
constraints and then ranks constraints according to different
metrics, including branch coverage and exploration depth.

SandTable’s conformance checking cannot guarantee the
absence of discrepancies between the specification and the
implementation, which might lead to false alarms reported
by specification-level model checking. For each bug found
during model checking, SandTable confirms its existence at
the implementation level by replaying the same trace (§3.4).

Once the user fixes the bug in the implementation and
updates the specification, SandTable can validate the fix and
detect any regression introduced by the fix by running the
conformance checking and model checking again.

The workflow of SandTable, presented in Figure 1, is ex-
plained in the following sections, addressing the critical chal-
lenges mentioned above.

3.1 Formal Specification

We detail the process of writing formal specifications re-
quired by SandTable. A specification is written as a state
machine, including the initial state, state transitions, and
correctness properties. The initial state assigns values to all
the variables that construct the system state. Each transition
has a precondition (e.g., waiting for an incoming message)
and updates variables as the system progresses. The correct-
ness properties describe the intended behavior of the system,
which are used as oracles for detecting bugs.

Figure 2 presents an example specification of ZooKeeper,
which focuses on describing its core protocol, ZAB [66]. The
specification is written in the TLA* language [73], which
is widely used for modeling distributed systems. It defines

739

CONSTANTS Servers, MaxRequests, MaxCrashes, MaxEpoch
CONSTANTS LOOKING, NOTIFICATION_MSG, FOLLOWERINFO_MSG
VARIABLES role, messages, epochLeader, eventCounter

Init
/\
/\
/\
/\

role = [s \in Server |-> LOOKING]

epochLeader \in [1..MaxEpoch -> SUBSET Server]

messages = [s \in Servers |-> [d \in Servers \ {s} |-> <<>>]]
eventCounter = [n_crash |-> 0]

VW W N U A WN R

11
12
13
14
15
16
17
18
19
20
21
22
23

HandleMsg == \E m \in messages:
CASE m.mType = NOTIFICATION_MSG -> HandleNotMsg(m.dst, m)
[] m.mType = FOLLOWERINFO_MSG -> HandleFInfoMsg(m.dst, m)
[] OTHER -> Assert(FALSE, "Error: unknown msg")

Next == \/ HandleMsg
\/ HandleTimeout
\/ ClientRequest
\/ NodeCrash
\/ NodeStart

StateConstraint == eventCounter.n_crash <= MaxCrashes /\ ...
LeadershipInv ==
\A epoch \in 1..MaxEpoch: Cardinality(epochLeader[epoch]) <= 1

Figure 2. An overview of ZAB specification.

several constants to instantiate the model and bound the
exploration depth, such as the number of ZooKeeper servers
(servers) and the maximum number of crash (MaxCrashes)
events. The system state is defined as several variables, such
as the role of each server (role) and the messages pending
delivery (messages). There are auxiliary variables defined for
other purposes (e.g., eventCounter in StateConstraint for
bounding the state space). The initial state is defined by as-
signing initial values to every variable (Init). There are four
types of transitions: message handling (HandleMsg), timeouts
(HandleTimeout), client requests (ClientRequest) and failure
events (NodeCrash and NodeStart). The correctness property
(LeadershipInv) states that there cannot be more than one
valid leader at any point.

Specifying system actions. The key is to capture how the
relevant system state transitions while abstracting away
other implementation details. SandTable mainly focuses on
global explorations [74]—interleaving between messages
and failures, thus the specification should model node-level
events such as message handling, timeouts, client requests,
network failures, and node crashes. When writing the speci-
fication, we do not include lower-level details such as thread
interleaving and message serialization.

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

public void run() {
Message response;
while (!stop) {

response = manager.pollRecvQueue(3000, TimeUnit.MILLISECONDS);

QuorumPeer.ServerState ackstate =
... // type conversion from int to enum...
Notification n = new Notification(response,

1
2
3
4
5 ... // observer handling code...
6
7
8
9 ... // logging, backward combability...

10 if(self.getPeerState() == QuorumPeer.ServerState.LOOKING){

11 recvqueue.offer(n);

12 if((ackstate == QuorumPeer.ServerState.LOOKING)

13 && (n.electionEpoch < logicalclock)){

14 ToSend notmsg = new ToSend(ToSend.mType.notification, ...
15 sendqueue.offer(notmsg);

16 }

17 } else {

18 if(ackstate == QuorumPeer.ServerState.LOOKING){

19 ToSend notmsg = new ToSend(ToSend.mType.notification, ...
20 sendqueue.offer(notmsg);

21 }

22 }

23}

24 '} // zookeeper-server/src/.../server/quorum/FastLeaderElection.java

response.buffer.getInt();

...); // decoding...

)

)s

(a) The implementation for handling leader election messages

EuroSys *24, April 22-25, 2024, Athens, Greece

| 1 HandleNotMsg(dst, response) ==
2 LET src == response.src
| 3 notmsg == [mType |-> NOTIFICATION_MSG, ...]
| 4 IN IF role[dst] = LOOKING
5 THEN /\ recvqueue' = [recvqueue EXCEPT ![dst] =
| 6 Append (@, response)]
| 7 /\ IF /\ response.ackstate = LOOKING
8 /\ response.round < logicalclock[dst]
| 9 THEN ReplyNotMsg(dst, src, notmsg)
| 10 ELSE DiscardNotMsg(src, dst)
11 ELSE /\ UNCHANGED recvqueue
| 12 /\ IF response.ackstate = LOOKING
13 THEN ReplyNotMsg(dst, src, notmsg)
| 14 ELSE DiscardNotMsg(src, dst)
| 15
16 ReplyNotMsg(src, dst, m, branch) ==
| 17 messages' = [messages EXCEPT
| 18 I[src][dst] = IF IsConnected(src, dst)
19 THEN Append(@, m) ELSE @,
| 20 I[dst][src] = Tail(@)]
| 21
| 22 DiscardNotMsg(src, dst) ==

23 messages' = [messages EXCEPT ![src][dst] = Tail(@)]

(b) The corresponding specification

Figure 3. ZooKeeper’s implementation for handling leader election message and the corresponding specification.
The tainted variables show how we model important implementation variables in the specification.

Figure 3 presents an example of translating an event han-
dler implementation code into one action in the specification.
The run method implements how the ZooKeeper server han-
dles leader election messages from other servers: The server
waits for a response from the other server and sends back a
notification if both servers are looking (LOOKING) for a new
leader and the server’s logical clock is higher, or if only
the other server is LOOKING. The notification is pushed into
a queue (recvqueue) if the server is LOOKING, and is further
processed by another thread.

In the specification, we model three important variables:
(1) the input response message (response), (2) the notification
message (notmsg) to send to other servers, and (3) the mes-
sage buffer (recvqueue) that stores the response messages
for later processing. The HandleNotMsg action is triggered by
an incoming response message, updates the message buffer
and sends back the notification message according to the
response content and the server’s local state. For example,
if the server is looking for a leader when receiving the re-
sponse message, it assigns the next state of the message
buffer (recvqueue’) with a new message buffer that appends
the response message to the old buffer (recvqueue).

The specification abstracts away low-level implementa-
tion details, such as message decoding, type conversion, log-
ging and support for backward compatibility. We also choose
to not model the handling logic for an observer server in the
specification as we want to focus on checking the interaction
between ZooKeeper leaders and followers.

740

Specifying environment actions. To check how the tar-
get system tolerates unexpected failures, we model node and
network failures in our specifications.

For node failures, we model node crash and rejoin behav-
iors. A node crash breaks all its network connections and
clears all the volatile data. When the node restarts and rejoins
the system, it returns to its initial state with the persistent
data, and reconnects to other nodes.

For network failures, we model different behaviors for
TCP and UDP semantics. The TCP connection ensures that
there is no message loss, duplication or reordering. Thus, we
introduce a network partition action to simulate scenarios
where all connections crossing a partition are broken until
the system recovers from the partition. In the case of UDP,
we further model message loss, duplication, and out-of-order
delivery.

Specifying correctness properties. We focus on safety
properties as oracles for finding bugs. Safety properties state
that something bad never happens (e.g., “there is never more
than one valid leader”) and are specified as invariants in
the specification. We also approximate liveness property
(something good eventually happens) checking based on the
checking of safety properties, as in [67, 92].

We choose safety properties from (1) the original pro-
tocol design (e.g., Raft [82] and Zab [65, 66]), and (2) the
system-specific guarantees and regressions (e.g., source code
assertions, documentation and historical issues).

EuroSys ’24, April 22-25, 2024, Athens, Greece

1 CheckLeader(self, votes, leader, round) ==
2 IF leader = self
3- THEN (IF round = logicalClock[self] THEN TRUE ELSE FALSE)
3+ THEN TRUE
4 ELSE (IF votes[leader].vote.proposedLeader = NULL THEN FALSE
ELSE (IF votes[leader].state = LEADING THEN TRUE ELSE FALSE))

Figure 4. Fixing discrepancies found by conformance
checking. The red line is the cause. The green line is the fix.

3.2 Conformance Checking

Conformance checking ensures specification quality by de-
tecting discrepancies between the specification and the im-
plementation. After SandTable detects a discrepancy, devel-
opers need to revise the specification and start a new round
of conformance checking for the revised specification. As
a by-product, general system correctness bugs, such as un-
handled exceptions, or memory leaks, can be also detected
during the conformance checking process.

SandTable detects discrepancies by randomly exploring
the specification-level state space to generate traces, replay-
ing them in the implementation, and comparing the specifi-
cation trace with the corresponding implementation trace.

To replay a trace, SandTable converts the specification
trace events to replay commands that are executed by the
implementation-level deterministic execution engine, which
will be detailed in §4.1. Message delivery events and failure
events are automatically converted. The user needs to pro-
vide timeout values for timeout events and shell commands
for client request events.

To compare the two traces, SandTable compares the vari-
ables in the specification and their counterparts in the imple-
mentation. The values of system variables are acquired by
querying the systems’ APIs or by parsing logs. The network
and node environment (e.g., message counts and node status)
is managed by SandTable, and can be compared directly. For
example, in Figure 3, the specification variable role is com-
pared with the system’s peer state (self.getPeerState(),
which is acquired by parsing logs).

Figure 4 shows a discrepancy and its fix. The code checks
a condition for becoming a leader upon receiving a notifi-
cation message. The discrepancy arose when applying the
specification to an older version of ZooKeeper. It was found
by comparing the role variable, which in the specification
trace is LOOKING, but in the implementation trace is LEADING
after executing a message delivery event. The root cause was
debugged by analyzing the message delivery context and
comparing the message handling code with the specification.

Once a discrepancy is resolved, we initiate a new round
of conformance checking. After multiple rounds, we gain
sufficient confidence in the quality of the specification. For
example, we can use a 30-minute timeout (based on the expe-
rience that discrepancies are seldom found after 30 minutes)
as the stopping condition when no further discrepancies are
detected.

741

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

Algorithm 1 Ranking constraints for each configuration

Input: Configurations set Configs
Input: Constraints set Constraints
1: for x in Configs do
2: Initialize an empty map M
3 for y in Constraints do
4: Random walk with (x, y) and collect data
5: Add (y,data) to M
6 end for
7 Sort y in M based on its data
8: end for

3.3 Specification-Level Model Checking

SandTable uses BFS to explore the specification-level state
space. The BFS algorithm is stateful and avoids exploring
the same state repeatedly. To further reduce the state space,
SandTable leverages symmetry [45] in the system: permuting
the nodes and workload values does not change whether an
action satisfies an invariant.

A challenge in running model checking for distributed
systems is to decide how to bound the state space, other-
wise model checking has to explore an infinitely large space.
SandTable helps developers to bound the space. Develop-
ers need to provide a collection of system configurations
Configs and budget constraints Constraints. Each system
configuration specifies the number of nodes and workload
values to instantiate the model. Each budget constraint spec-
ifies the maximum number of timeouts, failures and work-
loads that can happen. SandTable ranks budget constraints
for each configuration based on heuristics.

Algorithm 1 presents the algorithm for ranking the con-
straints. For each configuration, SandTable combines it with
a constraint to instantiate and bound the model, and per-
forms a random walk in the state space. The random walk
starts from the initial state and randomly chooses the next
step until there are no more steps to take or a predefined
timeout happens. For each random walk, SandTable collects
data including branch coverage, event counter and explo-
ration depth. SandTable then sorts all the budget constraints
according to the collected data. SandTable relies on a heuris-
tic that if the state exploration covers more branches and
involves more diverse events, then it is more likely to trig-
ger a bug. By default, SandTable favors random walk with a
smaller depth as it indicates a smaller state space that model
checking can exhaustively explore. Thus, the built-in sorting
function of SandTable first sorts by the branch coverage in
decreasing order, then by the diversity of the events in de-
creasing order, and finally by the depth in increasing order.
Developers can extend SandTable to install different sorting
functions.

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

3.4 Avoid False Alarms

To prevent false alarms of bugs in the specification-level
exploration, SandTable reproduces the bugs at the imple-
mentation level by replaying the event interleaving, similar
to the conformance checking phase. If this process does not
uncover any discrepancies, SandTable confirms the existence
of the bug in the implementation. Otherwise, developers
should fix the discrepancies and restart the workflow of con-
formance checking and model checking.

After fixing the bug, developers also need to update the
specification accordingly. Developers can use SandTable to
run conformance checking to ensure no new discrepancies
are introduced during the fix, and run model checking again
to ensure that the bug has been correctly fixed and that no
new bugs have been introduced by the fix.

4 Implementation and Integration

We choose TLA* [73] as the formal specification language
and implement specification-level exploration using TLC [32],
a model checker for TLA*. We employ TLC’s simulation
mode for random walk and the BFS mode for model checking.
We implement an implementation-level deterministic execu-
tion engine from scratch, as existing DMCKs are either pro-
prietary [92] or restricted to specific languages [67, 74, 76].

We will describe the SandTable implementation of de-
terministic execution (§4.1), followed by the integration of
SandTable into eight well-established open-source distributed
systems in industry and community (§4.2).

4.1 SandTable Implementation

SandTable is implemented in 5, 700 lines of C/C++ code (for
automated interposition, network proxy, failure simulation,
and conformance checking) and 1,300 lines of bash and
python code (for network configuration, cluster initializa-
tion and remote control). SandTable utilizes containers and
virtual machines, supporting both Docker [24] and LXD [27],
to run a cluster on a single machine. It can also operate on
multiple machines. We release SandTable as an open-source
project [37].

We have the goal to implement a portable and transparent
deterministic execution mechanism capable of running a
wide range of distributed systems without modifications to
either the target system or the underlying operating system.
This goal guides multiple design choices in our implementa-
tion.

The architecture of the implementation-level determin-
istic execution engine is presented in Figure 5. The engine
has control and observation over the target system, handling
things like node status (e.g., start, pause, and crash), network
tasks (e.g., message delivery and network failures) and non-
determinisms (e.g., timeout) by executing node, state and
network commands. It includes a state checker for confor-
mance checking, and a transparent network proxy (TPROXY)

742

EuroSys *24, April 22-25, 2024, Athens, Greece

()
Data Flow R — Engl ne
Control Flow ~ —-=-— >
| Event State
Internal Operation ===+ >
Scheduler Checker
Node 1« ~°|7 "~ = NodeCMD
e RN r Trace States
/ © f %." II'
Interceptor’ State CMD

......... . A

........ ;
Execution States

Network CMD

Network Syscalls -I

Kernel k%
Network Proxy

A
Node 2 \\ InTPROXY Manipulation Out TPROXY
— —
S ‘
-
\\)

Figure 5. The architecture of implementation-level de-
terministic execution engine. The control flow and inter-
nal operation arrows illustrate how engine commands inter-
act with each component. The data flow arrows depict how
network traffic is proxied.

Advance Time

Get States

mechanism [10] for controlling cluster network traffic. The
interceptor runs inside the target system’s address space and
controls nondeterminisms by preloading shared libraries [26]
to execute code and override functions, particularly system
call wrapper functions in the C standard library (libc). More
details of the implementation are provided in Appendix §A.

To reproduce a specification trace in the implementa-
tion, the trace events and states must be converted into cor-
responding SandTable deterministic execution commands.
The environment specification defines an auxiliary variable
to record the event to be converted and assigns common
event commands (e.g., message delivery and failure events).
SandTable provides scripts to parse the trace. Users need
to assign the auxiliary variable and extend the scripts for
system-specific action events (e.g., timeout duration for time-
out event and client request shell commands).

4.2 Integration

In our work, the target systems are PySyncObj [7], WRaft [3],
RedisRaft [9], DaosRaft [5], RaftOS [8], Xraft [11], Xraft-
KV [12] and ZooKeeper [1]. They implement distributed
consensus protocols, including Raft [80, 82] and Zab [65, 66],
to provide state machine replication. Specifically, PySyncObj
is a full-featured Raft library designed for replicating Python
objects in a cluster. It has gained broad adoption in the open-
source community as well as in industry. WRaft (“W” is the
first letter of the author’s name) is a Raft library written in C.
It has been subsequently adopted by Redis (RedisRaft) and
the DAOS Storage Stack (DaosRaft). RedisRaft and DaosRaft

EuroSys ’24, April 22-25, 2024, Athens, Greece

Systems Impl. Spec. Est. Effort

#Stars #LOC | #LOC #Var. #Act. #Inv. | Spec. Conf.
PySyncObj | 658 46K | 490 12 9 13 14 15
WRaft 1.0K 3.4K 879 14 15 13 14 3
RedisRaft 766 53K 600 14 9 15 7 5
DaosRaft 596 3.5K 584 13 9 14 3 3
RaftOS 339 13K 610 12 9 13 17 3
Xraft 219 67K 605 14 11 15 2 1
Xraft-KV 219 79K 618 18 10 18 2 1
ZooKeeper | 11.6K 11.8K 2037 39 20 15 7 7

Table 1. Integrated distributed systems and formal
specification effort.

extend WRaft with system-specific enhancements and opti-
mizations. RaftOS is another Raft library to replicate Python
Objects, featuring an asynchronous replication framework.
ZooKeeper is an industrial-strength distributed coordination
service in Java, which serves as the backbone for a number of
distributed systems. Xraft is a Raft implementation in Java for
educational uses. Xraft-KV is a distributed key-value store
based on Xraft. Table 1 provides a summary of the target
systems and the formal specification efforts. The two #LOC
columns represent modeled lines of code and their corre-
sponding specification lines. The columns #Var., #Act., and
#Inv. represent variables, actions and safety properties in
the specification respectively. The Est. Effort column repre-
sents the estimated specification and conformance checking
effort in person days, calculated from the git history. It is
notable that the conformance checking process is quick and
can find numerous discrepancies (e.g., 34 for WRaft and 20
for RaftOS).

The SandTable framework does not require manual instru-
mentation of the target system and has minimal restrictions
on the underlying language. SandTable adheres to the as-
sumptions adopted by the underlying target systems, in order
to prevent false positives. These assumptions influence the
system’s failure model. For example, in the case of a TCP
connection, failures like message duplication, loss, or out-of-
order delivery will not occur. Developers often rely on these
guarantees to optimize the implementations. We have for-
mally specified reusable network modules for both TCP and
UDP semantics (476 lines of code in total). We apply failure
models of UDP semantics to WRaft and RaftOS, which make
no assumptions about the network or explicitly use UDP. For
other systems, we apply failure models of TCP semantics.

We formally specified the latest versions (i.e., the main
branch or the latest release) of each system. For Raft-based
systems, we developed specifications from scratch, as ex-
isting TLA* specifications for Raft are abstract and do not
match the target system implementations. We modeled the
basic Raft protocol modules, including leader election and
log replication, for every system. We modeled the PreVote
extension for RedisRaft, DaosRaft and Xraft, and modeled
the log compaction module for WRaft. We modeled the Put

743

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

and Get operations of the key-value store in Xraft-KV, which
is based on Xraft but does not include PreVote. Most safety
properties in Raft systems are common, such as having only
one valid Leader, log consistency in the cluster, log dura-
bility, commitment requirements, and the monotonicity of
specific variables. Some safety properties are specific to in-
dividual systems, such as the requirement that retrying re-
quests should not contain an empty log for replication in
WRaft, and linearizability for Xraft-KV.

ZooKeeper offers official formal specifications contributed
by the community [36, 83], which come in two versions: a
protocol specification modeling the Zab protocol, as described
in [66], and a system specification that adheres to the system
code of version v3.7.0. We leveraged the system specification
with modifications, replacing message channels with our
network modules and eliminating local thread explorations
by immediately scheduling enabled thread actions. For ex-
ample, the specification models both the receiver thread (as
illustrated in Figure 3) and the worker thread. The receiver
places messages in a queue, enabling the worker to retrieve
and process them from the queue. Since the processing result
will not change as observed by other nodes, we removed any
interleavings between these two actions.

To replay a specification-level exploration trace at the im-
plementation level, two key requirements must be met: the
system should be runnable, and the engine should properly
interpret trace events and states. To meet the first require-
ment, we developed a portable driver for WRaft, RedisRaft,
and DaosRaft to handle network messages and client re-
quests, and to tick the system. We developed a simple Python
script for PySyncObj and RaftOS running on Python 3.7 to
import, initialize, and execute their core protocols. Xraft key-
value store and ZooKeeper are already runnable, and we sim-
ply use their release binaries to run on OpenJDK 19. To meet
the second requirement, the client request commands, time-
out durations and variables to compare should be specifically
converted to different commands for SandTable. Failures and
network delivery can be readily converted into commands
since they are common to all systems.

5 Evaluation

In this section, we evaluate the performance of SandTable
with respect to the following questions: (1) How effective
is SandTable in finding bugs? (§5.1) (2) How efficient is
SandTable? (§5.2) (3) How much speedup does specification-
level exploration provide when compared with implementation-
level exploration? (§5.3)

5.1 Effectiveness of Finding Bugs

As shown in Table 2, SandTable finds a total of 23 bugs. The
Stage column categorizes these bugs into three types based
on the stage at which they are discovered: model checking
(16), conformance checking (6), and modeling (1). There are

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

EuroSys *24, April 22-25, 2024, Athens, Greece

ID Stage Status Bug Consequence Time #Depth #States
PySyncObj#1 [18] Conformance New Unhandled exception during disconnection -

PySyncObj#2 [19] Verification New Commit index is not monotonic 6s 13 93713
PySyncObj#3 [20] Verification New Next index < match index 7s 18 189725
PySyncObj#4 [20] Verification New Match index is not monotonic 35s 25 1512679
PySyncObj#5 [21] Verification New Leader commits log entries of older terms 2min 14 2364779
WRaft#1 [17] Verification New Incorrectly appending log entries 9min 22 5954049
WRaft#2 [17] Verification Old Inconsistent committed log 22min 20 20955790
WRaft#3 [17] Conformance New Follower lagging behind until next snapshot -

WRaft#4 [17] Verification old Current term is not monotonic 39min 23 48338241
WRaft#5 [17] Verification New Retry messages include empty logs 11min 24 10576917
WRaft#6 [17] Conformance Old Memory leak -

WRaft#7 [17] Verification New Next index < match index 8min 23 7401586
WRaft#8 [17] Conformance New Prematurely stopping sending heartbeats -

WRaft#9 [17] Modeling Oold Cannot elect leaders due to incorrectly getting term -

DaosRaft#1 [22] Verification New Leader votes for others 5s 8 476
RaftOS#1 [28] Verification New Match index is not monotonic 5s 10 60101
RaftOS#2 [29] Verification New Incorrectly erasing log entries 4s 9 19455
RaftOS#3 [30] Conformance New Unhandled exception during receiving messages -

RaftOS#4 [31] Verification New Prematurely stopping checking commitment 4min 14 16938773
Xraft#1 [34] Verification New More than one valid leader in the same term 3s 8 3534
Xraft#2 [35] Conformance New Unhandled concurrent modification exception -

Xraft-KV#1 [33] Verification New Read operations do not satisfy linearizability 15s 10 124409
ZooKeeper#1 [2] Verification old Votes are not total ordered 4min 41 7625160

Table 2. Effectiveness and efficiency in detecting bugs. The “Stage” column categorizes bugs by the stages in which they
were found: model checking (i.e., “Verification”), modeling, and conformance checking. The “Status” represents whether the
bugs were first found by us (“New”) or not (“O1d”). “Time”, “#Depth” and “#States” indicate elapsed time, the number of events
and the number of explored distinct states to hit the bug. Only the bugs found in the model checking stage have the “Time”,

“4Depth”, and “#States” metrics.

18 new bugs and 5 old bugs. So far, 17 (out of 18) new bugs
have been confirmed and 13 have been fixed. SandTable
independently detects the 4 old bugs.

SandTable can consistently reproduce bugs detected at the
specification level. The bug-triggering trace is deterministi-
cally replayed at the implementation level. The bug traces
in both levels are invaluable for finding the root causes and
fixing the bugs.

Most bugs SandTable finds are unlikely to be detected by
manual testing or random testing, because these bugs are
deep, and the bug-triggering event interleavings are intricate.
Take PySyncObj#4 as an example, which has a triggering
prefix of 8 intricate events interleaved with a timeout event
inserted between two consecutive failed response messages
due to a network partition.

5.1.1 How SandTable Detects Bugs. SandTable aims to
find safety violation bugs during model checking stage. Only
traces that violate the safety properties are executed in the
implementation to confirm the bug. As these safety proper-
ties are necessary to ensure system correctness, bugs con-
firmed in the implementation are true bugs. Moreover, since
these bugs are identified through BFS, their triggering traces

744

have minimal depth. There are also by-product bugs found
during the modeling and conformance checking stages (e.g.,
unchecked simple conditions and unhandled exceptions).

5.1.2 Bugs Detected by SandTable. To demonstrate the
effectiveness of SandTable, we discuss bugs classified by sys-
tems. Due to space limitations, we only provide two detailed
bug explanations. In bug detection, we use a 2- or 3-node con-
figuration, with two workload values and constraints of 3-6
timeouts, 3—4 client requests, 1-4 failures, and 4-10 message
buffer sizes. Constraints are determined using Algorithm 1,
taking into account branch coverage, event diversity, and
maximum depth. For example, the top three constraints are
selected based on branch coverage, and further selections
can be made based on a smaller estimated state space (max-
imum depth) to make BFS explore deeper within a limited
time frame.

PySyncObj. We found 5 bugs in PySyncObj: 4 are safety vi-
olations, and 1 crashes the system. Bug #1 causes unexpected
node crashes due to the incorrect handling of disconnections.
The remaining 4 bugs involve violations of safety properties
required by the Raft protocol. Bugs #2, #3, and #4 violate

EuroSys ’24, April 22-25, 2024, Athens, Greece

A B

Delayed AER,
AER . flag=F, AER ;.1,0=2

Leader 4 sends AE,
AE;.10g=Nil, A.I,0=5

AER;

A receives AER;
A dpe=2

A sends AE;

AE3log=[2:4], ALyei=5

B replies with AER; 3
AER>flag=T, AER >1,0u=35,
AER; flag=T, AER;.1,0u=4

A receives
AER 3: A1 yyyen=4
AER3: A.1yyen=3

Figure 6. PySyncObj#4: Timing diagram of non-
monotonic match index. The variables and messages are
in gray. The bug points causing the consequence are in red.

the requirements related to protocol variables, including
monotonicity and size relationships. Bug #5 is related to the
current Leader incorrectly advancing the commit index to a
log entry created by a previous Leader, which is prohibited
by the Raft protocol.

We provide a detailed description of PySyncObj#4, which
results in the match index variable not being monotonic. As
the match index directly influences the commitment, there
exist potential risks of data inconsistency and data loss. Fig-
ure 6 presents a simplified space-time diagram illustrating
the root cause of the bug. This diagram condenses several
rounds of elections, synchronizations and a network parti-
tion failure at the beginning. In brief, Leader A aggressively
advances its next index to send only the latest logs to B.
If log synchronization fails, A resets the next index to an
older value provided by B. However, when B receives al-
ready synchronized logs, it provides a wrong next index
value, leading A to set a non-monotonic match index based
on the next index. Details of the explanations are provided
below. The network partition leads to a log inconsistency be-
tween Leader A and Follower B. Consequently, B rejects A’s
synchronization in AppendEntriesResponse message AER;
(AER;.flag = F indicating rejection and a requirement to
reset the next index to AER;.Iext = 2). This AER; message
is delayed in reaching A. Subsequently, A synchronizes its
logs, and by the time A sends AE,, their logs have already
been synchronized (not depicted in the diagram). The AE,
message contains no log entries because they are already
in sync. When the delayed AER; reaches A, A resets the
next index for resynchronization with B through AEs, which
includes log entries from index 2. B receives both AE; and
AE3 and responds with successful handling (flag = T) since
they are in sync. However, a bug causes B to incorrectly set
AERs3.Ihext = 4 when the AppendEntries message contains
logs, which should be the same as AER;.I;;ex; = 5. Upon re-
ceiving AER,, A sets the match index to AER,.Ijext — 1 = 4.
However, when A receives AERs, it incorrectly sets the match

745

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

| Leader Cis partitioned
A becomes Leader Crerm=1, C.log=[e/]
A.term=2, A.log=e:], >
AL =1
A commits e; — |
1o =1 |—"]
A snapshots e,
A.log=Nil, A.1apshor=1
Aisg.nds AE, t°7C LAEL | C receives AE;
AE.log=Nil, AE ;L commi=1 C.log=[e;], C.term=2,
< ARRy | UER,flag=T, C.Loppmi=1

Figure 7. Timing diagram of data inconsistencies in
WRaft. The network partition is shaded in gray diagonal
lines. The variables and messages are in gray. The bug points
causing the consequence are in red.

index to 3 without verifying the monotonicity. It is worth
noting that changing I,,.; after sending AE and flag in AER
messages are unverified optimizations for Raft.

WRaft, DaosRaft and RedisRaft. DaosRaft and RedisRaft
are downstream systems of WRaft, and we will discuss them
together. In WRaft, we uncovered a total of 9 bugs, including
4 independently found old bugs (#2, #4, #6, and #9) that had
been resolved in DaosRaft and/or RedisRaft but remained
unresolved in WRaft. The remaining 5 new bugs comprise
3 safety violations (#1, #5, and #7) and 2 liveness issues (#3
and #8), with 4 of them confirmed by RedisRaft [16] and
DaosRaft [15] developers. Most bugs are introduced during
incremental development, such as when introducing new
modules (e.g., log compaction) and extensions (e.g., PreVote).

WRaft#1 ignores a specific condition, leading to the con-
flicting log entries being appended and committed, resulting
in data inconsistency. WRaft#5 incorrectly handles a special
case, resulting in unnecessary synchronizations. WRaft#7
causes the next index to be no larger than the match in-
dex. WRaft#3 can cause Follower nodes to lag behind due
to the incorrect rejection of the Leader’s snapshot when log
inconsistency exists. WRaft#8 can prematurely disrupt the
broadcast of heartbeats in the event of a sending failure.

In DaosRaft, we found one additional bug introduced by an
extension, namely PreVote, which aims at enhancing cluster
stability when occasional failures occur. The bug causes the
Leader to vote for other nodes. In RedisRaft, no additional
bugs were found.

We present a detailed description of the data inconsis-
tencies that result from the combination of WRaft#1 and
WRaft#2. A simplified timing diagram in Figure 7 illustrates
the root cause of this bug. This diagram removes some start-
ing message interactions. In short, Leader A should synchro-
nize snapshots when log entries are compacted. However,
due to a bug, A incorrectly sends empty log entries instead

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

of the snapshot to C. Upon receiving the message, C fails
to remove unmatched log entries and incorrectly advances
the commit index, leading to data inconsistencies. Details
of the explanations are provided below. Node C is elected
as the Leader and processes a client request, appending log
entry e;. However, a network partition prevents the syn-
chronization of e; with Nodes A and B. Subsequently, Node
A becomes Leader after receiving B’s vote and processes
a client request, appending log entry e,. This entry is syn-
chronized with B and committed. Node A then compacts
its committed logs as snapshots. Afterwards, the network
partition is resolved, and A synchronizes with C. However,
due to WRaft#2, a Snapshot message should be sent in this
case, but an incorrect AppendEntries message AE; is sent
instead. Since log entry e; has been compacted, AE; contains
no log entries, but the commit index (denoted as Ioommi: in
the figure) is set to 1. When C receives AEj, it incorrectly
accepts the synchronization because it ignores checks for a
special case when the log entry to append is the first entry
due to WRaft#1. Consequently, log entry e; is not deleted,
but the committed index is set to 1, resulting in inconsistent
committed log entries across the cluster.

RaftOS. We found 4 bugs in RaftOS: 3 bugs are safety vi-
olations, and one bug is an implementation bug. RaftOS#1
violates the monotonicity property of the match index due to
an assignment without appropriate checks. RaftOS#2 leads
to data loss as a result of an incorrect condition check that
erases already matched log entries. RaftOS#3 is an implemen-
tation bug that crashes the node during message handling.
RaftOS#4 incorrectly breaks the commitment checking loop
in the presence of log inconsistency, which intends to pre-
vent a similar issue as in PySyncObj#5, but causes the cluster
to fail to make progress.

Xraft and Xraft-KV. We found two bugs in Xraft, and one
bug in Xraft-KV. Xraft#1 leads to multiple valid Leaders in
the cluster due to unconditional acceptance of stale vote
messages. Xraft#2 results in Leader crashing due to an un-
handled concurrent modification exception, arising from a
subtle thread race condition. Xraft-KV#1 reveals that the
KV store implementation does not provide a guarantee of
linearizability. All bugs were promptly confirmed and fixed
by the developer.

ZooKeeper. We conducted verification on the latest ver-
sion (v3.9.0) of ZooKeeper, but we did not find new bugs.
To show the effectiveness of our method, we reproduced
one known bug in version v3.4.3. The bug violates the total
order property of the votes, resulting in either multiple valid
Leaders or the inability to elect a Leader. Notably, while the
bug is located in the leader election module, the optimal
triggering trace involves the leader election, discovery and
synchronization modules of Zab, showing the complexity of

the bug.

746

EuroSys *24, April 22-25, 2024, Athens, Greece

Experiment #1 Experiment #2
System -

Time #Depth #States | #Depth #States
PySyncObj | 57min 41 63185747 24 1880642320
WRaft 2.1h 48 94475424 19 1064901869
RedisRaft 2.9h 45 161245842 19 1379707906
DaosRaft 59min 53 80684948 22 1720868573
RaftOS 23min 34 31569538 14 3347361061
Xraft 42min 47 67862168 21 1646089192
Xraft-KV 30min 39 34192341 20 1601906684
ZooKeeper | 1.7h 106 167834292 50 2125891595

Table 3. Efficiency of state exploration. Both experi-
ments use a 3-node configuration. Experiment #1 employs
more restrictive constraints that make the state space ex-
haustible, while experiment #2 doubles the constraints and
utilizes a 1-day time budget to stop.

5.2 Efficiency of SandTable

To evaluate the efficiency in finding bugs, we measured both
the wall-clock time and the number of distinct states to hit
bugs. To evaluate the efficiency of specification-level state
exploration, we conducted two experiments on bug-fixed
specifications. First, we measured the time required to ex-
plore a small state space exhaustively. Second, we measured
the number of distinct states in a large state space within a
one-day time frame. All experiments were carried out at the
specification level in BFS mode on an Ubuntu 22.04 server
equipped with a 3.5GHz CPU with 10 cores (20 hyperthreads)
and 64 GB memory.

Efficiency in finding bugs. We employed configurations
and constraints identical to §5.1. These settings are reason-
able since they are targeted for finding new bugs. In Table 2,
the Time and #States columns are metrics. Only safety vi-
olation bugs have the required metrics, while others are
denoted with “-”. The Time column shows the wall-clock
time to hit each bug. The time to detect a bug ranges from
3 seconds to 39 minutes. It shows the efficiency in finding
bugs, as just one machine hour of model checking can re-
veal numerous bugs. The #States column shows the number
of distinct states explored to trigger each bug. The value
reaches up to 107, showing the fast exploration speed and
the complexity of these bugs.

Efficiency of state exploration. We evaluated the efficiency
of state exploration through two experiments, both of which
utilized a 3-node configuration and were conducted on the
specification with bug fixes.

In experiment #1, we slightly reduced the timeout events
and network buffers to 3—-4 based on constraints of §5.1,
which resulted in a smaller state space that could be exhaus-
tively explored in hours. Notably, these constraints can still
find 87% safety violations when evaluating the specifications
without bug fixes. The results in Table 3 show that the explo-

EuroSys ’24, April 22-25, 2024, Athens, Greece

ration time to reach full coverage ranged from 23 minutes
to 2.9 hours.

In experiment #2, we doubled each constraint value, re-
sulting in a significantly larger state space, and we adopted a
one-day time budget to bound the exploration. The results in
Table 3 show that the exploration covered up to 10° distinct
states.

In both experiments, the number of distinct states steadily
increased over time, with average speeds ranging from 739, 515
to 2,324, 556 distinct states per minute.

In conclusion, the two experiments illustrate that the
speed of specification-level state exploration is fast, enabling
the checking of a large scale of distinct states while covering
deep depth within hours and days of model checking. We
believe that the scale provides confidence in the correctness
of the system since the most complex bug we found requires
only 107 states to trigger.

5.3 Specification-Level Speedup

In our specification-level speedup measurements, we focused
on two key metrics: (1) the time it took to explore one trace
at the specification level; (2) the time it took to explore one
trace at the implementation level.

Our experiment setup was as follows. We explored the
specification state space in random walk mode and replayed
the corresponding traces at the implementation level. We
adopted a 3-node configuration with constraints identical
to those used for bug detection. Each specification explo-
ration involved running 10, 000 traces with only one worker.
Subsequently, we randomly selected 1, 000 traces for deter-
ministic replay at the implementation level. We calculated
the average time for both metrics. The experiments were
conducted on the same machine as discussed in §5.2, with
the implementation running in LXD containers consisting
of 1 engine node and 3 worker nodes.

We chose to run specification-level exploration in random
walk mode because there is no straightforward way to con-
trol the implementation run in a stateful manner, such as
BFS, which would require checkpoints and system restora-
tion. Additionally, counting traces generated from the state
space graph is also not straightforward. To reduce the bias
in the comparison, we adopted the random walk mode.

The evaluation results are presented in Table 4. The trace
depth ranges from 7 to 78, with an average of 41. The speedup
(Column Speedup, computed as Impl./Spec.) ranges from
114X to 2989%. Notably, specification-level exploration proved
to be fast, with elapsed times varying between 5.83 and 20.7
milliseconds to explore one single trace. The variation in
speed is primarily due to the different complexities of each
specification.

The speed of implementation-level exploration exhibits
large variance due to the sleep for cluster initialization and

747

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

Trace Average Spec. Impl.
System Depth Deptﬁ (EIS) (mI;) Speedup
PySynCObj 9-54 40 14.18 1798.53 127
WRaft 13-60 47 20.70 2496.53 121
RedisRaft 10-78 45 15.87 1802.40 114
DaosRaft 11-64 48 11.96 2115.82 177
RaftOS 10-44 31 5.83 4813.74 825
Xraft 21-49 38 8.14 24338.57 2989
Xraft-KV 7-51 35 8.64 24032.17 2781
ZooKeeper 16-59 46 17.14 28441.65 1660

Table 4. Comparison of speed between specification-
level and implementation-level exploration. The
“Speedup” is computed as the ratio of “Spec.”/“Impl”

synchronization between two actions. For PySyncObj, Redis-
Raft, DaosRaft, and WRaft, our test driver has no sleep, result-
ing in an average trace exploration speed of approximately 2
seconds. RaftOS, although also using our test driver, relies on
sleep for certain asynchronous actions before executing the
next action, resulting in an average trace exploration time of
4.8 seconds. In contrast, Xraft and ZooKeeper rely on sleep
for both initialization and synchronization, introducing no-
table delays. Xraft required an average of 24 seconds, while
ZooKeeper required 28 seconds to explore a single trace. It
is worth noting that the sleep mechanism was not intention-
ally introduced, and we set the durations reasonably short.
Similar mechanisms were applied in related work, such as
SAMC [74], where exploring a ZooKeeper trace within a
depth range of 20-120 took 40 seconds.
In summary, the specification-level exploration in SandTable

can achieve speedups of up to 2989 times, compared to the
implementation-level exploration.

6 Discussion
6.1 Generalizability

SandTable can be applied to distributed systems with well-
defined protocols and correctness properties, and is not spe-
cific to any formal languages or model checkers.

Our evaluation primarily focuses on evaluating consensus
systems because they are representative, critical and hard
to get right. However, the targeted distributed systems are
not limited to consensus, as the event-driven structure is
common in distributed systems, and SandTable can replay
these events deterministically. The Xraft-KV system illus-
trates how SandTable can be applied to other systems by
specifying the KV actions and properties.

We choose TLA* and TLC for their widespread use in
modeling and checking distributed systems and their mature
toolchains. It is also possible to use alternative state-machine
based specification languages such as PlusCal [72] and the P
language [48, 49]. The choice of the specification language
and its model checker affects the modeling/conformance

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

difficulty and the state exploration speed. For example, us-
ing PlusCal may simplify writing imperative specifications
but complicates conformance checking as the TLC model
checker operates at the TLA* level.

6.2 Soundness and Completeness

SandTable can miss bugs due to discrepancies between the
specification and the implementation that conformance check-
ing fails to detect. SandTable also cannot detect bugs in the
components that are not modeled by the specification. Be-
sides, SandTable’s model checking is bounded and does not
detect bugs outside the explored state space. We do not ob-
serve any false alarm reported by SandTable in our evalua-
tion because SandTable always replays the buggy trace at
the implementation level to confirm the existence of the bug.

6.3 Lessons Learned

Trusting the specification for the implementation can be
risky, as bugs and gaps in the specification can compromise
its ability to prevent critical bugs. We use conformance check-
ing and run systems on real-world environments to avoid
false positives and boost confidence in system robustness.

Human-written unit test expectations is brittle. For exam-
ple, we encountered a failed unit test after fixing a critical
bug in WRaft because it asserts the buggy behavior as the
expected behavior [4]. It indicates that even when developers
meticulously analyze the corner conditions, errors can still
occur because the oracle can be mistaken. We employ safety
properties derived from the system design, documentation
and source codes to ensure that bad events never occur, while
excluding the unit test oracles.

The manual effort (as shown in Table 1) of specification
and conformance checking varies significantly. When we
are unfamiliar with the protocol (e.g., Raft), writing a specifi-
cation (e.g., PySyncObj and WRaft) can be time-consuming,.
However, as our familiarity with the Raft systems grew, the
time needed for these tasks significantly decreased (e.g., in-
tegrating Xraft took only 3 person days from scratch). When
the SandTable framework is in development, the time re-
quired for conformance is also significant due to additional
enhancement (e.g., PySyncObj). Integrating an existing ZAB
specification into SandTable required a considerable amount
of time due to the need to address different action granu-
larity and gaps with real-world failure models. RaftOS was
checked by a novice user who was unfamiliar with TLA*
and Raft (with assistance from an experienced user). The
time spent suggests that for non-expert users, the manual
effort required to use SandTable is manageable.

7 Related Work

We compare SandTable to previous work that hardens dis-
tributed systems using implementation-level model check-
ing, testing and formal verification.

EuroSys *24, April 22-25, 2024, Athens, Greece

Implementation-level model checking. The concept of
model checking, which involves exhaustive exploration of
the state space of abstract specifications, was originally pro-
posed by Clarke and Emerson [44]. Leading corporations
like Amazon [79] and Microsoft [86] have been using model
checking to verify their distributed system protocols before
implementation. In order to leverage model checking to ver-
ify the correctness of real system implementations, instead
of the abstract model, two broad approaches are proposed.

In the first approach, a model is extracted from the source
code through automated static analysis or manual efforts [39,
43, 46, 62, 63]. The abstract model is then checked by the
classical model checking approach. If counter-examples are
identified, they are subsequently mapped back to the source
code. SandTable relies on manual efforts to write the model
(i.e., the specification), and uses conformance checking to
improve its quality. There are also domain-specific languages
designed for model checking distributed systems and gener-
ating code automatically from specifications (e.g., Mace [68],
P [48, 49] and PGo [59]). However, they cannot directly find
bugs in existing distributed systems written in other lan-
guages.

The second approach involves the direct exploration of the
state space in the implementation code by controlling exe-
cution nondeterminisms. Initially starting with Verisoft [52]
and CMC [77], there have been many model checkers that
directly check implementation code [41, 57, 58, 67, 74, 76,
78, 87, 91, 92]. Our focus here is primarily on model check-
ers for distributed systems. CMC [77] is a stateful model
checker that directly checks C code, and it has successfully
detected numerous bugs in network protocol implementa-
tions. However, it comes with the requirement for invasive
modifications to execute the target system inside CMC’s
address space. MaceMC [67] emphasizes checking liveness
and employs bounded depth-first search alongside random
walks to identify safety and liveness bugs. Yet, it necessitates
that the programs to be checked are written in the Mace lan-
guage. CrystalBall [91] and LMC [57] are based on MaceMC,
consequently limited to the Mace language. In contrast to
these checkers, SandTable does not rely on the programming
language used in the implementation code and can run the
implementation in its native execution environment.

MoDist [92] is the first transparent DMCK, controlling
nondeterminisms at the system call level of the WinAPI.
Our interposition of the POSIX API takes inspiration from
this work. MoDist is stateless, employs DPOR [50] to re-
duce the state space, and can discover both safety and live-
ness bugs. DeMeter [58] primarily focuses on the decoupling
of local and global explorations to reduce the state space.
SAMC [74] and FlyMC [76] reduce the state space in the
exploration of complex distributed systems using semantic-
aware, symmetry-based, and event independence-based al-
gorithms. These model checkers primarily emphasize state
space reduction. SandTable is complementary to these state

EuroSys ’24, April 22-25, 2024, Athens, Greece

space reduction techniques, and we believe that these tech-
niques can also be integrated into SandTable [56].

Testing. Previous work has found various types of distributed
systems bugs using systematic testing [6, 38, 40, 41, 47, 51, 55,
69, 75, 88, 89]. The most closely related work is Mocket [89].
Mocket requires users to provide a high-quality specifica-
tion that describes the desired system behavior, uses TLC to
generate test cases and treats any discrepancies between the
specification and the implementation as bugs. However, as
reported by Mocket and other work [14], existing specifica-
tions also contain bugs that introduce false alarms. Mocket
also suffers from the scalability issues of implementation-
level state exploration, as it executes each test case generated
by TLC at the implementation level. In contrast, SandTable
employs conformance checking to guide the users to write
specifications that precisely describe the actual system behav-
ior, and addresses the scalability issues by exploring the state
space at the specification level. Besides, model-based test-
case generation is used for MongoDB’s operational transfor-
mation functions [47], and property-based testing is applied
in Amazon S3 ShardStore node [41]. As a model checking
tool, SandTable exhaustively explores a bounded space to
detect deep bugs in distributed system implementations.

Formal verification. Formal verification is an effective ap-
proach to ensure the absence of bugs by proving the imple-
mentation satisfies the specification. Recent work has made
great progress on building formally verified distributed sys-
tems [54, 60, 61, 64, 84, 85, 90]. However, formal verification
requires heavy proof efforts and cannot directly find bugs in
existing distributed systems.

8 Conclusion

In this work, we present SandTable, a technique and method-
ology that significantly scales distributed system model check-
ing by exploring the state space at the specification level, and

confirming bugs at the implementation level. We find that the

SandTable methodology is effective, efficient and practical

for finding true bugs and provides coverage guarantees for

real distributed systems. SandTable’s ability to transparently

control unmodified distributed systems to run on unmodified

POSIX systems plays a critical role in debugging and fixing

deep bugs. We believe the integration efforts required by

SandTable are cost-efficient in practice, especially for critical

distributed systems where developers aim to achieve for-
mal verification. In our future work, we plan to implement

continuous integration of conformance checking to keep

the specification and implementation in sync, and to further

reduce the state space by applying existing state space reduc-
tion techniques. Our ultimate goal is to establish SandTable

as a common practice in developing correct mission-critical

distributed systems. We have made SandTable publicly avail-
able at https://github.com/tangruize/SandTable.

749

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

Acknowledgments

We thank the anonymous reviewers and our shepherd, James
Bornholt, for their insightful comments. We thank Tianyin
Xu for the valuable feedback that helped improve our work.
Ruize Tang, Yu Huang, Yuyang Wei, Lingzhi Ouyang, and
Xiaoxing Ma were supported by the National Natural Science
Foundation of China (62025202, 62372222), the CCF-Huawei
Populus Grove Fund (CCF-HuaweiFM202304), the Coopera-
tion Fund of Huawei-Nanjing University Next Generation
Programming Innovation Lab (YBN2019105178SW38), and
the Fundamental Research Funds for the Central Universi-
ties (020214912222). Xudong Sun was supported by NSF CNS
2145295 and CNS 2130560.

References

[1] 2008. Apache ZooKeeper. https://zookeeper.apache.org/

[2] 2012. ZooKeeper#1: Leader election never settles for a 5-node cluster.
https://issues.apache.org/jira/browse/ZOOKEEPER-1419

[3] 2013. WRaft. https://github.com/willemt/raft

[4] 2016. An incorrect unit test in WRaft. https://github.com/willemt/
raft/blob/e428eeb921a014192d1d703dd317f3f29f5916c5/tests/test
snapshotting.c#L498

[5] 2016. DaosRaft. https://github.com/daos-stack/raft

[6] 2016. Jepsen. https://jepsen.io/

[7] 2016. PySyncObj. https://github.com/bakwc/PySyncObj

[8] 2016. RaftOS. https://github.com/zhebrak/raftos

[9] 2018. RedisRaft. https://github.com/RedisLabs/raft

[10] 2018. Transparent proxy support - The Linux Kernel documentation.
https://docs.kernel.org/networking/tproxy.html

[11] 2018. Xraft. https://github.com/xnnyygn/xraft/tree/master/xraft-core

[12] 2018. Xraft-KVStore. https://github.com/xnnyygn/xraft/tree/master/
xraft-kvstore

[13] 2019. FlyMC Technical Report. https://tinyurl.com/flymc-technical-
report

[14] 2020. A bug in Raft TLA+: bugfix: HandleAppendEntriesRequest. https:
//github.com/ongardie/raft.tla/pull/6

[15] 2021. Bugs confirmed by DaosRaft. Personal communication.

[16] 2021. Bugs confirmed by RedisRaft. https://github.com/RedisLabs/raft/
issues/49

[17] 2021. WRaft bugs. https://github.com/willemt/raft/pull/118

[18] 2022. PySyncObj#1: Fix disconnection when connecting. https://github.
com/bakwc/PySyncObj/pull/161

[19] 2022. PySyncObj#2: Raft commit index is not monotonic. https://github.
com/bakwc/PySyncObj/issues/166

[20] 2022. PySyncObj#3 and #4: Raft match index is not monotonic. https:
//github.com/bakwc/PySyncObj/issues/167

[21] 2022. PySyncObj#5: Leader commits log entries of older terms. https:
//github.com/bakwc/PySyncObj/issues/169

[22] 2023. DaosRaft#1: Reject request vote if self is leader. https://github.
com/daos-stack/raft/pull/69

[23] 2023. difen(3) manual pages. https://man.openbsd.org/dlopen.3#dlsym

[24] 2023. Docker. https://www.docker.com/

[25] 2023. Id.bfd(1) manual pages. https://man.openbsd.org/Id.bfd.1#
version-script=

[26] 2023. Id.so(1) manual pages.
PRELOAD

[27] 2023. LXD. https://ubuntu.com/Ixd

[28] 2023. RaftOS#1: Raft match index is not monotonic. https://github.com/
zhebrak/raftos/issues/25

[29] 2023. RaftOS#2: Log may be erased incorrectly. https://github.com/
zhebrak/raftos/issues/26

https://man.openbsd.org/ld.so.14LD_

https://github.com/tangruize/SandTable
https://zookeeper.apache.org/
https://issues.apache.org/jira/browse/ZOOKEEPER-1419
https://github.com/willemt/raft
https://github.com/willemt/raft/blob/e428eeb921a014192d1d703dd317f3f29f5916c5/tests/test_snapshotting.c#L498
https://github.com/willemt/raft/blob/e428eeb921a014192d1d703dd317f3f29f5916c5/tests/test_snapshotting.c#L498
https://github.com/willemt/raft/blob/e428eeb921a014192d1d703dd317f3f29f5916c5/tests/test_snapshotting.c#L498
https://github.com/daos-stack/raft
https://jepsen.io/
https://github.com/bakwc/PySyncObj
https://github.com/zhebrak/raftos
https://github.com/RedisLabs/raft
https://docs.kernel.org/networking/tproxy.html
https://github.com/xnnyygn/xraft/tree/master/xraft-core
https://github.com/xnnyygn/xraft/tree/master/xraft-kvstore
https://github.com/xnnyygn/xraft/tree/master/xraft-kvstore
https://tinyurl.com/flymc-technical-report
https://tinyurl.com/flymc-technical-report
https://github.com/ongardie/raft.tla/pull/6
https://github.com/ongardie/raft.tla/pull/6
https://github.com/RedisLabs/raft/issues/49
https://github.com/RedisLabs/raft/issues/49
https://github.com/willemt/raft/pull/118
https://github.com/bakwc/PySyncObj/pull/161
https://github.com/bakwc/PySyncObj/pull/161
https://github.com/bakwc/PySyncObj/issues/166
https://github.com/bakwc/PySyncObj/issues/166
https://github.com/bakwc/PySyncObj/issues/167
https://github.com/bakwc/PySyncObj/issues/167
https://github.com/bakwc/PySyncObj/issues/169
https://github.com/bakwc/PySyncObj/issues/169
https://github.com/daos-stack/raft/pull/69
https://github.com/daos-stack/raft/pull/69
https://man.openbsd.org/dlopen.3#dlsym
https://www.docker.com/
https://man.openbsd.org/ld.bfd.1#version-script=
https://man.openbsd.org/ld.bfd.1#version-script=
https://man.openbsd.org/ld.so.1#LD_PRELOAD
https://man.openbsd.org/ld.so.1#LD_PRELOAD
https://ubuntu.com/lxd
https://github.com/zhebrak/raftos/issues/25
https://github.com/zhebrak/raftos/issues/25
https://github.com/zhebrak/raftos/issues/26
https://github.com/zhebrak/raftos/issues/26

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

(30]
(31]

(32]
(33]

(34]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(50]

(51]

2023. RaftOS#3: KeyError in handling append_entries_response message.
https://github.com/zhebrak/raftos/issues/27

2023. RaftOS#4: Change in update commit index. https://github.com/
zhebrak/raftos/pull/30

2023. TLC and TLA+ Toolbox. https://github.com/tlaplus/tlaplus
2023. Xraft-KV#1: Read operations do not satisfy linearizability. https:
//github.com/xnnyygn/xraft/issues/40

2023. Xraft#1: Two leaders with the same term. https://github.com/
xnnyygn/xraft/issues/33

2023. Xraft#2: Xraft-kvstore does not satisfy linearizability. https:
//github.com/xnnyygn/xraft/issues/39

2023. ZooKeeper TLA+ specification. https://github.com/apache/
zookeeper/tree/master/zookeeper-specifications/system-spec

2024. SandTable. https://github.com/tangruize/SandTable

Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-
driven Fault Injection. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’15).

Thomas Ball and Sriram K. Rajamani. 2002. The SLAM project: debug-
ging system software via static analysis. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’02).

Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke
Kosewski, Justin Reynolds, and Casey Rosenthal. 2016. Chaos Engi-
neering. IEEE Software 33, 3 (2016).

James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton,
Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node
in Amazon S3. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP’21).

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007.
Paxos made live: an engineering perspective. In Proceedings of the
Twenty-Sixth Annual ACM Symposium on Principles of Distributed
Computing (PODC’07).

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. 2003. Counterexample-guided abstraction refinement for sym-
bolic model checking. J. ACM 50, 5 (2003).

Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis
of Synchronization Skeletons Using Branching-Time Temporal Logic.
In Logic of Programs, Workshop.

E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. 1998. Symmetry
reductions in model checking. In Computer Aided Verification (CAV’98).
James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasdreanu, Robby, and Hongjun Zheng. 2000. Bandera:
extracting finite-state models from Java source code. In Proceedings of
the 22nd International Conference on Software Engineering (ICSE’00).
A. Jesse Jiryu Davis, Max Hirschhorn, and Judah Schvimer. 2020. Ex-
treme modelling in practice. Proc. VLDB Endow. 13, 9 (2020).

Ankush Desai. 2013. The P programming language. https://github.
com/p-org/P

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Raja-
mani, and Damien Zufferey. 2013. P: safe asynchronous event-driven
programming. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’13).
Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order
reduction for model checking software. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’05).

Yu Gao, Wensheng Dou, Dong Wang, Wenhan Feng, Jun Wei, Hua
Zhong, and Tao Huang. 2023. Coverage Guided Fault Injection for
Cloud Systems. In Proceedings of the 45th International Conference on
Software Engineering (ICSE’23).

750

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

EuroSys *24, April 22-25, 2024, Athens, Greece

Patrice Godefroid. 1997. Model checking for programming languages
using VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’97).

Patrice Godefroid and Koushik Sen. 2018. Combining Model Checking
and Testing. Springer International Publishing.

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin
Timany, and Lars Birkedal. 2021. Distributed causal memory: modular
specification and verification in higher-order distributed separation
logic. Proc. ACM Program. Lang. 5, POPL (2021).

Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan Jiang, Chen
Wang, Mandana Vaziri, Owolabi Legunsen, and Tianyin Xu. 2023.
Acto: Automatic End-to-End Testing for Operation Correctness of
Cloud System Management. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP’23).

Xiaosong Gu, Wei Cao, Yicong Zhu, Xuan Song, Yu Huang, and Xiaox-
ing Ma. 2022. Compositional Model Checking of Consensus Protocols
via Interaction-Preserving Abstraction. In 2022 41st International Sym-
posium on Reliable Distributed Systems (SRDS’22).

Rachid Guerraoui and Maysam Yabandeh. 2011. Model Checking a
Networked System Without the Network. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI'11).
Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and
Lintao Zhang. 2011. Practical software model checking via dynamic in-
terface reduction. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP’11).

Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan
Beschastnikh. 2023. Compiling Distributed System Models with PGo.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2
(ASPLOS’23).

Travis Hance, Yi Zhou, Andrea Lattuada, Reto Achermann, Alex Con-
way, Ryan Stutsman, Gerd Zellweger, Chris Hawblitzel, Jon Howell,
and Bryan Parno. 2023. Sharding the State Machine: Automated Modu-
lar Reasoning for Complex Concurrent Systems. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’23).
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
proving practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP’15).

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. 2002. Lazy abstraction. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’02).

Gerard J. Holzmann. 2001. From Code to Models. In Proceedings of
the Second International Conference on Application of Concurrency to
System Design (ACSD’01).

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Adore:
atomic distributed objects with certified reconfiguration. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI’22).

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In 2010 USENIX Annual Technical Conference (ATC’10).

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab:
High-performance broadcast for primary-backup systems. In 2011
IEEE/IFIP 41st International Conference on Dependable Systems & Net-
works (DSN’11).

Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat.
2007. Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. In 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI'07).

Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala,
and Amin M. Vahdat. 2007. Mace: language support for building dis-
tributed systems. In Proceedings of the 28th ACM SIGPLAN Conference

https://github.com/zhebrak/raftos/issues/27
https://github.com/zhebrak/raftos/pull/30
https://github.com/zhebrak/raftos/pull/30
https://github.com/tlaplus/tlaplus
https://github.com/xnnyygn/xraft/issues/40
https://github.com/xnnyygn/xraft/issues/40
https://github.com/xnnyygn/xraft/issues/33
https://github.com/xnnyygn/xraft/issues/33
https://github.com/xnnyygn/xraft/issues/39
https://github.com/xnnyygn/xraft/issues/39
https://github.com/apache/zookeeper/tree/master/zookeeper-specifications/system-spec
https://github.com/apache/zookeeper/tree/master/zookeeper-specifications/system-spec
https://github.com/tangruize/SandTable
https://github.com/p-org/P
https://github.com/p-org/P

EuroSys ’24, April 22-25, 2024, Athens, Greece

on Programming Language Design and Implementation (PLDI'07).

Beom Heyn Kim, Taesoo Kim, and David Lie. 2022. Modulo: Finding

Convergence Failure Bugs in Distributed Systems with Divergence

Resync Models. In 2022 USENIX Annual Technical Conference (ATC’22).

Leslie Lamport. 1998. The part-time parliament. ACM Trans. Comput.

Syst. 16, 2 (1998).

Leslie Lamport. 2019. TLA+ specification for Paxos.

//github.com/tlaplus/Examples/blob/master/specifications/

PaxosHowToWinATuringAward/Paxos.tla

Leslie Lamport. 2021. PlusCal Introduction.

azurewebsites.net/tla/tutorial/intro.html

Leslie Lamport. 2022. TLA+ Home Page. https://lamport.azurewebsites.

net/tla/tla.html

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.

Lukman, and Haryadi S. Gunawi. 2014. SAMC: Semantic-Aware Model

Checking for Fast Discovery of Deep Bugs in Cloud Systems. In 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI'14).

[75] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang
You. 2019. CrashTuner: detecting crash-recovery bugs in cloud systems
via meta-info analysis. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP’19).

[76] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Da-

niar H. Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,

Feng Ye, Tanakorn Leesatapornwongsa, Aarti Gupta, Shan Lu, and

Haryadi S. Gunawi. 2019. FlyMC: Highly Scalable Testing of Complex

Interleavings in Distributed Systems. In Proceedings of the Fourteenth

EuroSys Conference 2019 (EuroSys’19).

Madanlal Musuvathi, David YW. Park, Andy Chou, Dawson R. En-

gler, and David L. Dill. 2002. CMC: A Pragmatic Approach to Model

Checking Real Code. In 5th Symposium on Operating Systems Design

and Implementation (OSDI’02).

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and

Reproducing Heisenbugs in Concurrent Programs. In 8th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’08).

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc

Brooker, and Michael Deardeuff. 2015. How Amazon web services

uses formal methods. Commun. ACM 58, 4 (2015).

Diego Ongaro. 2014. Consensus: bridging theory and practice. Ph.D.

Dissertation. Stanford University, USA.

Diego Ongaro. 2014. TLA+ specification for Raft. https://github.com/

ongardie/raft.tla

Diego Ongaro and John Ousterhout. 2014. In Search of an Under-

standable Consensus Algorithm. In 2014 USENIX Annual Technical

Conference (ATC’14).

Lingzhi Ouyang, Yu Huang, Binyu Huang, and Xiaoxing Ma. 2023.

Leveraging TLA+ Specifications to Improve the Reliability of the

ZooKeeper Coordination Service. In Dependable Software Engineering.

Theories, Tools, and Applications: 9th International Symposium, SETTA

2023, Nanjing, China, November 27-29, 2023, Proceedings (SETTA’23).

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming

and proving with distributed protocols. Proc. ACM Program. Lang. 2,

POPL (2017).

Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and

Nickolai Zeldovich. 2023. Grove: a Separation-Logic Library for Veri-

fying Distributed Systems. In Proceedings of the 29th Symposium on

Operating Systems Principles (SOSP’23).

Dharma Shukla. 2018. Azure Cosmos DB: Pushing the frontier of globally

distributed databases. https://azure.microsoft.com/en-us/blog/azure-

cosmos-db-pushing-the-frontier-of-globally-distributed-databases/

[87] Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: Systematic
Evaluation of Distributed Systems. In 5th International Workshop on
Systems Software Verification (SSV°10).

[69]

[70]

[71] https:

[72] https://lamport.

(73

—

(74]

(77

—

(78]

(79]

(80]
(81]

(82]

(83

[t}

(84

=

(85]

(86]

751

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

[88] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,
Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, and Tianyin
Xu. 2022. Automatic Reliability Testing For Cluster Management
Controllers. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’22).

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao
Huang. 2023. Model Checking Guided Testing for Distributed Systems.
In Proceedings of the Eighteenth European Conference on Computer
Systems (EuroSys’23).

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: a frame-
work for implementing and formally verifying distributed systems.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15).

Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kun-
cak. 2009. CrystalBall: predicting and preventing inconsistencies in
deployed distributed systems. In Proceedings of the 6th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI'09).
Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haox-
iang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009.
MODIST: Transparent Model Checking of Unmodified Distributed
Systems. In 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI'09).

[89]

[90]

[o1]

[92]

A Implementation Details
A.1 Interposition

Interposition is the enabling technique to achieve determin-
istic control and observation of the target system running
on each worker node. We implement the interposition layer,
which we refer to as the “interceptor”, to run in the address
space of the target system. The interceptor intercepts POSIX
API functions and interacts with the engine node. We will
describe how the interceptor operates and what it intercepts
to achieve deterministic control and observation.

The LD_PRELOAD trick. In POSIX systems that use ELF, the
dynamic linker provides a feature to execute code and to
override functions in other shared libraries. This feature can
be easily employed by setting the LD_PRELOAD environment
variable to a user-defined shared library [26]. The preloaded
library can contain functions to execute before main() and
to override same-name functions.

We leverage this technique to override POSIX APIs, par-
ticularly system call wrapper functions defined in the C
standard library (libc), as they are major sources of nondeter-
minisms and provide access to the target system’s resources.
Additionally, we use this technique to execute commands
from the engine.

To override POSIX APIs, we simply define functions with
the same name as the functions we wish to override. For
instance, to override the write() syscall, we just need to
define the function in our interceptor. After executing our
custom code logic, we can invoke the original write () syscall
by utilizing d1sym() [23] to find the original function address.
To disable the overriding of specific functions, we use a
version script [25] to change the visibility of these functions
to “local”. In total, we have intercepted 20 POSIX APIs.

https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://lamport.azurewebsites.net/tla/tutorial/intro.html
https://lamport.azurewebsites.net/tla/tutorial/intro.html
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://github.com/ongardie/raft.tla
https://github.com/ongardie/raft.tla
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/

SandTable: Scalable Distributed System Model Checking with Specification-Level State Exploration

For executing engine commands, we start a thread that
establishes a connection with the engine, and receives com-
mands from it. These commands serve various purposes,
such as advancing the virtual clock, retrieving system states
and exiting the target system.

Virtual clock. The virtual clock controls the code’s percep-
tion of time. It allows us to advance time arbitrarily, trigger-
ing timeout events without waiting for the real wall clock.
We achieve this by intercepting time-related system calls, in-
cluding functions like clock_gettime() and gettimeofday().

While it’s true that many system calls have timeout pa-
rameters (e.g., select()), we find that our intercepted system
calls are sufficient for a wide range of systems. This obser-
vation is based on how programs typically handle timeouts.
They begin by retrieving the current time, establish a dead-
line by adding a timeout value to it, and then periodically
compare the current time to this deadline. When the current
time exceeds the deadline, the corresponding event is trig-
gered. As a result, syscalls for retrieving the current time are
the primary determinant for triggering timeout events.

Virtual clock increases under two conditions: when exe-
cuting a time advancement command from the engine, and
when the target system requests the current time, causing a
small predefined increment (e.g., 1 nanosecond) to maintain
time monotonicity.

Network interception. We intercept network syscalls in
the interceptor for tracking messages and the network status
of the target system. To minimize modifications to syscall
requests, we do not change the destination of these syscalls
to the engine node. Instead, the network traffic control is
implemented in the engine and described in §A.2.

When sending a message, if the destination matches a
configured address of concern, the interceptor adds a header
including message boundary information to instruct the en-
gine to enqueue the message in the network buffer. Before
receiving a message, the interceptor checks if the receiv-
ing queue is empty. An empty receiving queue can lead to
blocking or receiving no messages.

States observation. If there is no public API for observing
the states of the target system, the interceptor provides a
mechanism to intercept logging file descriptors. It parses
the debug-level and trace-level logs using user-defined regu-
lar expressions to extract corresponding states. While this
method may not capture all variables for local states, it is
often sufficient for critical variables of interest used in confor-
mance checking. Industrial systems typically feature detailed
logging, especially for core protocols.

A.2 Network Proxy

To proxy network messages to the engine, we implement a
transparent network proxy mechanism in the engine based
on the Linux transparent proxy (TPROXY) [10] feature (only

752

EuroSys *24, April 22-25, 2024, Athens, Greece

affecting the engine’s compatibility with Linux; the inter-
ceptor is not restricted). As the name suggests, the target
systems are unaware that their messages are being proxied.
The engine buffers these messages, and exercises manipula-
tion over them.

This technique allows the capture and delivery of network
messages. To enable TPROXY for a specific subnet, we con-
figure the route forwarding rules on the router (i.e., the host
running cluster containers) to route the subnet traffic to the
engine node. We configure the firewall on the engine node
to redirect the subnet’s traffic to the TPROXY socket (i.e.,
a socket with the IP_TRANSPARENT flag) port listened by the
engine. To masquerade the true sender when delivering mes-
sages to the receiver, the engine binds the TPROXY socket
to the true sender’s address before connecting or sending to
the receiver. This setup ensures that senders believe they are
connected to their intended receivers, and receivers perceive
messages as coming from the original senders.

We implement a message manipulation mechanism that
provides control over messages. For TCP connections, mes-
sages are stored in a queue, with only the head message
available for sending. The failure model permits only net-
work partition, as described in §A.3. For UDP messages, the
messages are stored in a list, allowing for selective dropping,
duplication, or out-of-order delivery as needed.

A.3 Failure Simulation

The engine injects two types of failures that can happen in
real distributed systems: node crashes and network failures.

For node crashes, we simulate them by sending a SIGQUIT
signal, which aborts the target system without cleanups
before termination. We implement it by sending keyboard
bindings of the signal, such as “Ctrl+\” in the virtual con-
sole allocated by SSH. To rejoin a crashed node, the engine
restarts the target system by sending the shell commands.

For network failures, we simulate network partition fail-
ures for TCP connections, which disconnect the connections,
clear network buffers between the sender and the receiver,
and prevent further connections until network recovery. For
UDP packets, we simulate message drops, duplications, and
out-of-order deliveries. These failure injections are imple-
mented in the engine by manipulating the network buffers
and connections.

A.4 State Checking

The state checker is used for conformance checking, which
compares specification trace states with implementation ex-
ecution states.

State comparison occurs after each action, and if discrep-
ancies emerge, the engine prompts the discrepancy’s location
and aborts. This checking process is automated. It provides
valuable information for developers to manually address
specification discrepancies.

EuroSys ’24, April 22-25, 2024, Athens, Greece

There are some challenges to obtaining execution states.
While network states can be retrieved from the network
proxy component, obtaining the target system’s state is more
complex due to its reliance on the target system’s semantics.

We implement two methods for retrieving target system
states without making modifications to the source code. The
first method is to access states through the APIs provided by
the target system, which are commonly used for debugging
purposes. In cases where the first method is not applicable,
we utilize instrumentation of logging file descriptors, as de-
scribed in §A.1, to parse debugging logs and extract critical
variable states of interest. However, if both of these meth-
ods are not applicable, developers have the option to modify
the source code to provide an interface for obtaining states,
although, in practice, we did not utilize it.

753

R. Tang, X. Sun, Y. Huang, Y. Wei, L. Ouyang, and X. Ma

A.5 Event Execution

The engine utilizes three types of commands to execute
events. Network commands manipulate network-related ac-
tions, such as message delivery and network failure injection.
Node commands are designed for controlling target system
status (e.g., start, pause, and crash), managing interposition
of nondeterminisms, and retrieving states of the target sys-
tem. Lastly, state commands are executed for conformance
checking.

There is an issue of when to execute the next event. Execut-
ing an event that is not enabled in the target system can lead
to false positives during conformance checking. Although
some commands in the interposition are used for tracking
enabling conditions, in situations where enabling conditions
are challenging to fully track, we implement sleeps for a
brief delay before scheduling the next event.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DMCK Overview
	2.2 The Need for Specification-Level Exploration

	3 SandTable
	3.1 Formal Specification
	3.2 Conformance Checking
	3.3 Specification-Level Model Checking
	3.4 Avoid False Alarms

	4 Implementation and Integration
	4.1 SandTable Implementation
	4.2 Integration

	5 Evaluation
	5.1 Effectiveness of Finding Bugs
	5.2 Efficiency of SandTable
	5.3 Specification-Level Speedup

	6 Discussion
	6.1 Generalizability
	6.2 Soundness and Completeness
	6.3 Lessons Learned

	7 Related Work
	8 Conclusion
	References
	A Implementation Details
	A.1 Interposition
	A.2 Network Proxy
	A.3 Failure Simulation
	A.4 State Checking
	A.5 Event Execution

